Let
f ( x ) = tan 2 x sec x + tan 2 2 x sec 2 x + … + tan 2 n x sec 2 n − 1 x
where x ∈ ( − 2 π , 2 π ) and n ∈ N .
Evaluate the limit
x → 0 lim ⎝ ⎛ x f ( x ) + tan 2 n x ⎠ ⎞ 1 / x 2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
First, we note that
tan θ + tan θ sec 2 θ = tan θ ( 1 + cos 2 θ 1 ) = cos θ sin θ cos 2 θ cos 2 θ + 1 = cos θ cos 2 θ sin θ ( 2 cos 2 θ ) = cos 2 θ 2 sin θ cos θ = cos 2 θ sin 2 θ = tan 2 θ
Using this identity, we can simplify f ( x ) + tan 2 n x like so:
f ( x ) + tan 2 n x = tan 2 x sec x + tan 2 2 x sec 2 x + … + tan 2 n x sec 2 n − 1 x + tan 2 n x = tan 2 x sec x + tan 2 2 x sec 2 x + … + tan 2 n − 1 x sec 2 n − 2 x + tan 2 n − 1 x = … = tan 2 x sec x + tan 2 x = tan x
Thus, our limit is
x → 0 lim ⎝ ⎛ x f ( x ) + tan 2 n x ⎠ ⎞ 1 / x 2 = x → 0 lim ( x tan x ) 1 / x 2
If we substitute x = arctan u , using the series expansion arctan u = u − 3 u 3 + 5 u 5 − … , we have
x → 0 lim ( x tan x ) 1 / x 2 = u → 0 lim ( u arctan u ) − 1 / x 2 = u → 0 lim ( 1 − 3 u 2 ) − 1 / x 2
Since u ∼ arctan u = x as u approaches 0, we are allowed to rewrite our limit as
u → 0 lim ( 1 − 3 u 2 ) − 1 / x 2 = u → 0 lim ( 1 − 3 u 2 ) − 1 / u 2 = v → − ∞ lim ( 1 + 3 v 1 ) v = e 1 / 3
by making another substitution v = − u 2 1 . The limit follows from the fact that v → ± ∞ lim ( 1 + v a ) v = e a .
Hence, we have
x → 0 lim ⎝ ⎛ x f ( x ) + tan 2 n x ⎠ ⎞ 1 / x 2 = e 1 / 3