Limited Trigonometry - II

Calculus Level 4

Let

f ( x ) = tan x 2 sec x + tan x 2 2 sec x 2 + + tan x 2 n sec x 2 n 1 f(x) = \tan \frac{x}{2} \sec x + \tan \frac{x}{2^2} \sec \frac{x}{2} + \ldots + \tan \frac{x}{2^n} \sec \frac{x}{2^{n-1}}

where x ( π 2 , π 2 ) x \in (-\frac{\pi}{2},\frac{\pi}{2}) and n N n \in \mathbb{N} .

Evaluate the limit

lim x 0 ( f ( x ) + tan x 2 n x ) 1 / x 2 \lim_{x \to 0} \left( \dfrac{f(x)+\tan \dfrac{x}{2^n}}{x} \right)^{1/x^2}


Join the Brilliant Classes and enjoy the excellence.
e 1 3 e^{\frac{1}{3}} e 1 Limit does not exist. 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jake Lai
Nov 9, 2015

First, we note that

tan θ + tan θ sec 2 θ = tan θ ( 1 + 1 cos 2 θ ) = sin θ cos θ cos 2 θ + 1 cos 2 θ = sin θ ( 2 cos 2 θ ) cos θ cos 2 θ = 2 sin θ cos θ cos 2 θ = sin 2 θ cos 2 θ = tan 2 θ \begin{array}{c}\ \tan \theta + \tan \theta \sec 2\theta &= \tan \theta (1 + \dfrac{1}{\cos 2\theta}) \\ &= \dfrac{\sin \theta}{\cos \theta} \dfrac{\cos 2\theta+1}{\cos 2\theta} \\ &= \dfrac{\sin \theta (2\cos^2 \theta)}{\cos \theta \cos 2\theta} \\ &= \dfrac{2\sin \theta \cos \theta}{\cos 2\theta} \\ &= \dfrac{\sin 2\theta}{\cos 2\theta} \\ &= \tan 2\theta \end{array}

Using this identity, we can simplify f ( x ) + tan x 2 n f(x) + \tan \frac{x}{2^n} like so:

f ( x ) + tan x 2 n = tan x 2 sec x + tan x 2 2 sec x 2 + + tan x 2 n sec x 2 n 1 + tan x 2 n = tan x 2 sec x + tan x 2 2 sec x 2 + + tan x 2 n 1 sec x 2 n 2 + tan x 2 n 1 = = tan x 2 sec x + tan x 2 = tan x \begin{array}{c}\ f(x) + \tan \frac{x}{2^n} &= \tan \frac{x}{2} \sec x + \tan \frac{x}{2^2} \sec \frac{x}{2} + \ldots + \tan \frac{x}{2^n} \sec \frac{x}{2^{n-1}} + \tan \frac{x}{2^n} \\ &= \tan \frac{x}{2} \sec x + \tan \frac{x}{2^2} \sec \frac{x}{2} + \ldots + \tan \frac{x}{2^{n-1}} \sec \frac{x}{2^{n-2}} + \tan \frac{x}{2^{n-1}} \\ &= \ldots \\ &= \tan \frac{x}{2} \sec x + \tan \frac{x}{2} \\ &= \tan x \end{array}

Thus, our limit is

lim x 0 ( f ( x ) + tan x 2 n x ) 1 / x 2 = lim x 0 ( tan x x ) 1 / x 2 \lim_{x \to 0} \left( \dfrac{f(x)+\tan \dfrac{x}{2^n}}{x} \right)^{1/x^2} = \lim_{x \to 0} \left( \dfrac{\tan x}{x} \right)^{1/x^2}

If we substitute x = arctan u x = \arctan u , using the series expansion arctan u = u u 3 3 + u 5 5 \arctan u = u-\frac{u^3}{3}+\frac{u^5}{5}-\ldots , we have

lim x 0 ( tan x x ) 1 / x 2 = lim u 0 ( arctan u u ) 1 / x 2 = lim u 0 ( 1 u 2 3 ) 1 / x 2 \lim_{x \to 0} \left( \dfrac{\tan x}{x} \right)^{1/x^2} = \lim_{u \to 0} \left( \dfrac{\arctan u}{u} \right)^{-1/x^2} = \lim_{u \to 0} \left( 1-\frac{u^2}{3} \right)^{-1/x^2}

Since u arctan u = x u \sim \arctan u = x as u u approaches 0, we are allowed to rewrite our limit as

lim u 0 ( 1 u 2 3 ) 1 / x 2 = lim u 0 ( 1 u 2 3 ) 1 / u 2 = lim v ( 1 + 1 3 v ) v = e 1 / 3 \lim_{u \to 0} \left( 1-\frac{u^2}{3} \right)^{-1/x^2} = \lim_{u \to 0} \left( 1-\frac{u^2}{3} \right)^{-1/u^2} = \lim_{v \to -\infty} \left( 1+\frac{1}{3v} \right)^{v} = e^{1/3}

by making another substitution v = 1 u 2 v = -\frac{1}{u^2} . The limit follows from the fact that lim v ± ( 1 + a v ) v = e a \displaystyle \lim_{v \to \pm \infty} \left( 1+\frac{a}{v} \right)^{v} = e^a .

Hence, we have

lim x 0 ( f ( x ) + tan x 2 n x ) 1 / x 2 = e 1 / 3 \lim_{x \to 0} \left( \dfrac{f(x)+\tan \dfrac{x}{2^n}}{x} \right)^{1/x^2} = \boxed{e^{1/3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...