Limited Trigonometry- I

Calculus Level 5

f ( x ) = t a n ( x 2 ) s e c ( x ) + t a n ( x 2 2 ) s e c ( x 2 ) + . . + t a n ( x 2 n ) s e c ( x 2 n 1 ) f(x)=tan\left( \frac{x}{2} \right) \cdot sec \left( x \right)+tan\left( \frac{x}{2^2} \right) \cdot sec \left( \frac{x}{2} \right)+..+tan\left( \frac{x}{2^n} \right) \cdot sec \left( \frac{x}{2^{n-1}} \right) g ( x ) = f ( x ) + t a n ( x 2 n ) g(x)=f(x)+tan\left( \frac{x}{2^n} \right)

where x ( π 2 , π 2 ) x \in \left( -\frac{\pi}{2} , \frac{\pi}{2} \right) and n N n \in \mathbb{N}

Evaluate the limit : lim x 0 ( g ( x ) x ) 1 x \displaystyle \lim_{x \to 0} \left( \dfrac{g(x)}{x} \right)^{\frac{1}{x}}


Join the Brilliant Classes and enjoy the excellence.
e 1 3 e^{\frac{1}{3}} 1 e Limit does not exist. None of the above.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nishu Sharma
May 6, 2015

Well , According to Question framing , I orally conclude that It must be

f ( x ) = tan x tan x 2 n g ( x ) = tan x L = lim x 0 ( tan x x ) 1 x = e lim x 0 ( tan x x x 2 ) = 1 f(x)=\tan { x } -\tan { \cfrac { x }{ { 2 }^{ n } } } \\ g(x)=\tan { x } \\ L=\lim _{ x\rightarrow 0 }{ { \left( \cfrac { \tan { x } }{ x } \right) }^{ \cfrac { 1 }{ x } } } ={ e }^{ \lim _{ x\rightarrow 0 }{ { \left( \cfrac { \tan { x } -x }{ { x }^{ 2 } } \right) } } }=1

Q.E.D



P r o o f Proof : Let concentrate on first term , we have to make it telescopic type !

T 1 = sin x 2 cos x 2 cos x = sin ( x x 2 ) cos x 2 cos x = tan x tan x 2 x x 2 T 2 = tan x 2 tan x 2 2 f ( x ) = 1 n T k = tan x tan x 2 n \displaystyle{{ T }_{ 1 }=\cfrac { \sin { \cfrac { x }{ 2 } } }{ \cos { \cfrac { x }{ 2 } \cos { x } } } =\cfrac { \sin { (x-\cfrac { x }{ 2 } ) } }{ \cos { \cfrac { x }{ 2 } \cos { x } } } =\tan { x } -\tan { \cfrac { x }{ 2 } } \\ x\rightarrow \cfrac { x }{ 2 } \\ { T }_{ 2 }=\tan { \cfrac { x }{ 2 } } -\tan { \cfrac { x }{ { 2 }^{ 2 } } } \\ f(x)=\sum _{ 1 }^{ n }{ { T }_{ k } } =\tan { x } -\tan { \cfrac { x }{ { 2 }^{ n } } } }

Hence Prooved !

u could have used tan x expansion series!! makes things easy

A Former Brilliant Member - 6 years, 1 month ago

Log in to reply

Is my method is hard for you ? :P

well I did it in max 30-35 second's , So i don't think i used very big method .

So i don't think using expansion of tan x , can be solved in this time !

Nishu sharma - 6 years, 1 month ago

Log in to reply

it could be!! for sure! i did in tht way only!+ my method was just a secondary to urs!

A Former Brilliant Member - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...