Limited yet powerful (III)

Calculus Level 3

lim x 0 + x + 1 x 1 1 / x \large \lim_{x\to0^{+}} \left|\dfrac{x+1}{x-1} \right|^{1/x}

If the value of the limit above is equal to e N e^N , find the value of N N .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Noel Lo
Nov 30, 2015

lim x 0 x + 1 x 1 1 x = e x p ( lim x 0 l n x + 1 x 1 1 x ) = e x p ( lim x 0 1 x l n x + 1 x 1 ) = e x p ( lim x 0 1 x ( l n x + 1 l n x 1 ) ) \lim_{x\rightarrow0}|\frac{x+1}{x-1}|^{\frac{1}{x}} =exp(\lim_{x\rightarrow0}ln|\frac{x+1}{x-1}|^{\frac{1}{x}} )=exp(\lim_{x\rightarrow0}{\frac{1}{x}} ln|\frac{x+1}{x-1}|) =exp(\lim_{x\rightarrow0}{\frac{1}{x}} (ln|x+1|-ln|x-1|))

= e x p ( lim x 0 1 x + 1 1 x 1 1 ) = e x p lim x 0 2 ( x + 1 ) ( x 1 ) = e x p 2 1 ( 1 ) = e x p ( 2 ) = e 2 =exp(\lim_{x\rightarrow0} \frac{ \frac{1}{x+1}- \frac{1}{x-1}}{1})=exp\lim_{x\rightarrow0} \frac{-2}{(x+1)(x-1)}=exp\frac{-2}{1(-1)}=exp(2)=e^{2}

Is this using L'Hopital's?

Kevin Erdiza - 5 years, 6 months ago

Log in to reply

Yes. The second line contains the derivative of the last step on the first line.

Krutarth Patel - 3 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...