Limited yet powerful (VII)

Calculus Level 4

lim x 0 ( x sin x ) 1 x 2 = e N \large \lim_{x\rightarrow0} \left(\frac{x}{\sin {x}}\right)^{\frac{1}{x^2}} =e^{N}

N 1 = ? N^{-1}=?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Noel Lo
Dec 27, 2015

See below for the step-by-step solution:

l i m x 0 ( x s i n x ) 1 x 2 lim_{x\rightarrow0} (\frac {x}{sin {x}})^{\frac {1}{x^2}} = e l n l i m x 0 ( x s i n x ) 1 x 2 e^{ln \cdot lim_{x\rightarrow0} (\frac {x}{sin {x}})^{\frac {1}{x^2}}} . If the last limit exists, considerating that the function f(x)=ln x is continuous we can do e l n l i m x 0 ( x s i n x ) 1 x 2 e^{ln \cdot lim_{x\rightarrow0} (\frac {x}{sin {x}})^{\frac {1}{x^2}}} = e l i m x 0 l n ( x s i n x ) 1 x 2 e^{lim_{x\rightarrow0} ln (\frac {x}{sin {x}})^{\frac {1}{x^2}}} . Now, we are going to prove that the last limit exists and this will imply that we can do it.

l i m x 0 l n ( x s i n x ) 1 x 2 lim_{x\rightarrow0} ln (\frac {x}{sin {x}})^{\frac {1}{x^2}} = l i m x 0 1 x 2 l n ( x s i n x ) lim_{x\rightarrow0} \frac {1}{x^2} \cdot ln (\frac {x}{sin {x}}) . Applying L'Hopital

l i m x 0 1 x 2 l n ( x s i n x ) lim_{x\rightarrow0} \frac {1}{x^2} \cdot ln (\frac {x}{sin {x}}) = l i m x 0 s i n ( x ) x ( s i n ( x ) x c o s ( x ) s i n 2 x 2 x ) lim_{x\rightarrow0} \frac {sin (x)}{x} \cdot (\frac {sin (x) - x \cdot cos(x)}{sin^{2}{x} \cdot 2x}) = l i m x 0 s i n ( x ) x c o s ( x ) s i n ( x ) 2 x 2 lim_{x\rightarrow0} \frac {sin (x) - x \cdot cos(x)}{sin(x) \cdot 2 \cdot x^2} = l i m x 0 ( x x 3 3 ! + o ( x 3 ) ) ( x x 3 2 ! + o ( x 3 ) ) 2 x 3 lim_{x\rightarrow0} \frac {(x - \frac{x^3}{3!} + o(x^3)) - (x - \frac {x^3}{2!} + o(x^3))}{ 2 \cdot x^3} = 1 6 \frac {1}{6} ...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...