Not Limiting a Sum

Algebra Level 5

α , β \alpha, \beta are the roots of 375 x 2 25 x 2 = 0 375x^2-25x-2=0 . Denote S n = α n + β n S_n = \alpha^n+\beta^n , and if the summation below is in the form of a b \frac a b where a , b a,b are coprime positive integers. Find the value of a + b a+b .

n = 1 S n \large \displaystyle \sum_{n=1}^\infty S_n


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Mar 18, 2015

= lim n α + β + α 2 + β 2 + α 3 + β 3 . . . . α n + β n \displaystyle \lim_{n\to \infty}\alpha+\beta+\alpha^{2}+\beta^{2}+\alpha^{3}+\beta^{3}....\alpha^{n}+\beta^{n}

collect α a n d β t e r m s \alpha~and ~\beta~terms applying infinite GP formula

we get α 1 α + β 1 β \frac{\alpha}{1-\alpha}+\frac{\beta}{1-\beta}

further simplification gives α + β 2 α β 1 ( α + β ) α β \frac{\alpha+\beta-2\alpha \beta}{1-(\alpha+\beta)-\alpha \beta}

substitute the value α + β = 25 375 a n d α β = 2 375 \alpha+\beta=\frac{25}{375}~and~\alpha \beta=\frac{-2}{375}

u will get 29 348 = 1 12 \frac{29}{348}=\frac{1}{12}

Please proof that G P GP approaches to infinity are eligible!

Figel Ilham - 6 years, 2 months ago

Shit man I didn't cancel the terms ...:(

Rohit Ner - 6 years, 2 months ago
Christopher Boo
Mar 17, 2015

x 2 1 15 x 2 375 = 0 x^2-\frac{1}{15}x-\frac{2}{375}=0

Newton's Sum:

S 1 1 15 = 0 S 2 1 15 S 1 4 375 = 0 S 3 1 15 S 2 2 375 S 1 = 0 \begin{aligned}\displaystyle S_1 -\frac{1}{15}& &= 0 \\ S_2 -\frac{1}{15}&S_1-\frac{4}{375} &= 0 \\ S_3 -\frac{1}{15}&S_2-\frac{2}{375}S_1 &= 0 \\ \vdots\end{aligned}

Sum all the equations together we get

( S n ) 1 15 ( S n ) 1 15 2 375 ( S n ) 4 375 = 0 S n = 1 12 \begin{aligned}\displaystyle \left ( \sum{S_n} \right ) -\frac{1}{15}\left ( \sum{S_n} \right ) -\frac{1}{15}- \frac{2}{375} \left ( \sum{S_n} \right ) -\frac{4}{375} &= 0 \\ \sum{S_n} &= \frac{1}{12}\end{aligned}

There're some typos in your 3rd Newton sum and final equation

Jared Low - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...