n → ∞ lim ( ( 2 n 3 n ) ( 3 n 5 n ) ) 1 / n = b 2 b a a
The equation above holds true for positive integers a and b . Find the value of a + b .
Bonus:
Do it without
Stirling's approximation
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Truly amazing question to do without stirling approximation Did the same :-D
alternatively write L = n → ∞ lim ( Γ 2 ( 3 n + 1 ) Γ ( 5 n + 1 ) Γ ( n + 1 ) ) 1 / n we use: ln ( L ) = n → ∞ lim ( n ln ( Γ ( 5 n + 1 ) ) − 2 ln ( Γ ( 3 n + 1 ) ) + ln ( Γ ( n + 1 ) ) ) = l ′ o p i t a l n → ∞ lim 5 ψ ( 5 n + 1 ) − 6 ψ ( 3 n + 1 ) + ψ ( n + 1 ) we use tha fact as asymptopic levels ψ ( n + 1 ) = − γ + H n ≈ ln ( n ) ln ( L ) = n → ∞ lim 5 ln ( 5 n ) − 6 ln ( 3 n ) + ln ( n ) → L = 3 6 5 5
L = n → ∞ lim [ ( 2 n 3 n ) ( 3 n 5 n ) ] 1 / n
L = n → ∞ lim [ ( 3 n ) ! ( 2 n ) ! ( 5 n ) ! ⋅ ( 3 n ) ! ( 2 n ) ! n ! ] 1 / n
L = n → ∞ lim [ ( 3 n ) ! ( 3 n ) ! ( 5 n ) ! n ! ] 1 / n
L = n → ∞ lim [ 6 π n ( 3 n / e ) 3 n ⋅ 6 π n ( 3 n / e ) 3 n 1 0 π n ( 5 n / e ) 5 n ⋅ 2 π n ( n / e ) n ] 1 / n
L = n → ∞ lim ⎣ ⎡ 3 6 2 0 ⋅ 3 6 n 5 5 n ⎦ ⎤ 1 / n
L = n → ∞ lim ⎣ ⎡ 3 6 2 0 ⎦ ⎤ 1 / n ⋅ n → ∞ lim [ 3 6 n 5 5 n ] 1 / n
L = 3 2 ⋅ 3 5 5
Thus:
a = 5 , b = 3 , a + b = 8
Problem Loading...
Note Loading...
Set Loading...
Let P = n → ∞ lim ( ( 2 n 3 n ) ( 3 n 5 n ) ) n 1 We notice that ( 2 n 3 n ) ( 3 n 5 n ) = r = 0 ∏ 2 n − 1 3 n − r 5 n − r .So P = n → ∞ lim ( r = 0 ∏ 2 n − 1 3 n − r 5 n − r ) n 1 . Now taking log on both sides. lo g P = n → ∞ lim n 1 lo g r = 0 ∏ 2 n − 1 3 n − r 5 n − r Using lo g a b = lo g a + lo g b . We get lo g P = n → ∞ lim n 1 r = 0 ∑ 2 n − 1 lo g ( 3 n − r 5 n − r ) → lo g P = ∫ 0 2 lo g ( 3 − x 5 − x ) d x
Hence we get P = 3 6 5 5
So a = 5 & b = 3 . Hence a + b = 8