Limiting Limits

Calculus Level 2

If

lim x 10 x 3 10 x 2 25 x + 250 x 4 149 x 2 + 4900 = a b , \lim _{x\rightarrow 10} \frac{x^{3}-10x^{2}-25x+250}{x^{4}-149x^{2}+4900} = \frac{a}{b},

where a a and b b are coprime integers, what is a + b ? a+b?


The answer is 73.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jan 20, 2016

x 3 10 x 2 25 x + 250 x 4 149 x 2 + 4900 = ( x 10 ) ( x 2 25 ) ( x 2 100 ) ( x 2 49 ) \small{\dfrac{x^{3}-10x^{2}-25x+250}{x^{4}-149x^{2}+4900}=\dfrac{(x-10)(x^2-25)}{(x^2-100)(x^2-49)}} = x 2 25 ( x + 10 ) ( x 2 49 ) ~~~~~~~~~~~~~~~~~~~~~~\small{=\dfrac{x^2-25}{(x+10)(x^2-49)}} lim x 10 x 2 25 ( x + 10 ) ( x 2 49 ) = 1 0 2 25 ( 10 + 10 ) ( 1 0 2 49 ) = 5 68 \color{plum}{\lim _{x\rightarrow 10}\dfrac{x^2-25}{(x+10)(x^2-49)}}=\dfrac{10^2-25}{(10+10)(10^2-49)}=\dfrac{5}{68} 5 + 68 = 73 \Large\color{forestgreen}{5+68=73}

Well nice solution.

A Former Brilliant Member - 5 years, 4 months ago

how did you come up with what to use to divide

Adeniyi Adegbola - 3 years, 3 months ago

Since it has the Indeterminate Form 0 0 \dfrac{0}{0} , use L'Hospital's Rule

lim x 10 x 3 10 x 2 25 x + 250 x 4 149 x 2 + 4900 \lim_ {x\rightarrow 10} \dfrac{x^3-10x^2-25x+250}{x^4-149x^2+4900}

= lim x 10 3 x 2 20 x 25 4 x 3 298 x =\lim_ {x\rightarrow 10} \dfrac{3x^2-20x-25}{4x^3-298x}

= 3 ( 1 0 2 ) 20 ( 10 ) 25 4 ( 1 0 3 ) 298 ( 10 ) =\dfrac{3(10^2)-20(10)-25}{4(10^3)-298(10)}

= 300 200 25 4000 2980 =\dfrac{300-200-25}{4000-2980}

= 75 1020 =\dfrac{75}{1020}

= 5 68 =\dfrac{5}{68}

= 5 68 =\dfrac{5}{68}

Finally,

a + b = 5 + 68 = a+b=5+68= 73 \boxed{73}

Chew-Seong Cheong
Jan 20, 2016

Let f ( x ) = x 3 10 x 2 25 x + 250 f(x) = x^3-10x^2-25x+250 and g ( x ) = x 4 149 x 2 + 4900 g(x) = x^4-149x^2+4900 . Since lim x 10 f ( x ) g ( x ) = 0 0 \begin{aligned} \lim_{x \to 10} \frac{f(x)}{g(x)} = \frac{0}{0} \end{aligned} , we can use L'Hôpital's rule .

lim x 10 f ( x ) g ( x ) = lim x 10 f ( x ) g ( x ) = lim x 10 3 x 2 20 x 25 4 x 3 298 x = 75 1020 = 5 68 a + b = 5 + 68 = 73 \begin{aligned} \lim_{x \to 10} \frac{f(x)}{g(x)} & = \lim_{x \to 10} \frac{f'(x)}{g'(x)} \\ & = \lim_{x \to 10} \frac{3x^2-20x-25} {4x^3-298x} \\ & = \frac{75}{1020} = \frac{5}{68} \\ & \\ \Rightarrow a + b & = 5+68 = \boxed{73} \end{aligned}

Well L'Hospitals rule makes it easy though.Nice solution.

A Former Brilliant Member - 5 years, 4 months ago

Thanks!!!!

shah shabnum - 1 year, 3 months ago

L'Hopital's Rule has made it easy for me to solve the limit problems.

Silvia Karwitha - 3 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...