Limiting roots

Calculus Level 1

Find
lim x 0 x + 1 1 x \displaystyle\lim _{ x\rightarrow 0 }{ \frac { \sqrt { x+1 } -1\quad }{ x } }

This problem is a part of my set The Best of Me


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Siddharth G
Jun 2, 2014

Let x = n 1 x=n-1
Then
lim n 1 0 ( n 1 ) + 1 1 n 1 \lim _{ n-1\rightarrow 0 }{ \frac { \sqrt { (n-1)+1 } -1\quad }{ n-1 } }
lim n 1 n 1 n 1 \Rightarrow \lim _{ n\rightarrow 1 }{ \frac { \sqrt { n } -1\quad }{ n-1 } }


Since n 1 = ( n 1 ) ( n + 1 ) n-1=(\sqrt { n } -1)(\sqrt { n } +1)

lim n 1 n 1 ( n 1 ) ( n + 1 ) \Rightarrow \lim _{ n\rightarrow 1 }{ \frac { \sqrt { n } -1\quad }{ (\sqrt { n } -1)(\sqrt { n } +1)} } lim n 1 1 n + 1 \Rightarrow \lim _{ n\rightarrow 1 }{ \frac { 1\quad }{ \sqrt { n } +1 } } = 1 1 + 1 =\frac { 1 }{ \sqrt { 1 } +1 } = 1 2 =\frac { 1 }{ 2 } = 0.5 \boxed{0.5}

You can do this a different way. One can use L’Hospital’s Rule to solve this. lim {x -> 0} \frac{\sqrt{x+1}-1}{x}=lim {x -> 0} \frac{a}{b} = = \frac{lim {x -> 0}a'}{lim {x -> 0}b'} where a'=\frac{x+1}{2} and b'=1 now we can simply sub in the value zero and find that the limit is 1/2

Matt Schramm - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...