Limiting tan 1 \tan^{-1} at infinity

Calculus Level 4

lim x x [ tan 1 ( x + 1 x + 2 ) tan 1 ( x x + 2 ) ] = ? \large \lim_{x\rightarrow \infty}x \left[ \tan^{-1} \left ( \frac{x+1}{x+2} \right )-\tan^{-1}\left ( \frac{x}{x+2} \right) \right] = \, ?

Enter your answer as 999 if you think the limit does not exist (or it diverges).


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

L = lim x x [ tan 1 ( x + 1 x + 2 ) tan 1 ( x x + 2 ) ] = lim x x [ tan 1 ( 1 1 x + 2 ) tan 1 ( 1 2 x + 2 ) ] Let u = 1 x + 2 = lim u 0 ( 1 u 2 ) [ tan 1 ( 1 u ) tan 1 ( 1 2 u ) ] As lim u 0 [ tan 1 ( 1 u ) tan 1 ( 1 2 u ) ] = 0 = lim u 0 tan 1 ( 1 u ) tan 1 ( 1 2 u ) u A 0/0 case, L’H o ˆ pital’s rule applies. = lim u 0 1 1 + ( 1 u ) 2 + 2 1 + ( 1 2 u ) 2 1 Differentiate up and down w.r.t. u = 1 2 = 0.5 \begin{aligned} L & = \lim_{x \to \infty} x \left[ \tan^{-1} \left(\frac {x+1}{x+2} \right) - \tan^{-1} \left(\frac x{x+2} \right) \right] \\ & = \lim_{x \to \infty} x \left[ \tan^{-1} \left(1 - \frac 1{x+2} \right) - \tan^{-1} \left(1 - \frac 2{x+2} \right) \right] & \small \color{#3D99F6} \text{Let }u= \frac 1{x+2} \\ & = \lim_{u \to 0} \left(\frac 1u -2\right) \color{#3D99F6} \left[ \tan^{-1} \left(1 - u \right) - \tan^{-1} \left(1 - 2u \right) \right] & \small \color{#3D99F6} \text{As }\lim_{u \to 0} \left[ \tan^{-1} \left(1 - u \right) - \tan^{-1} \left(1 - 2u \right) \right] = 0 \\ & = \lim_{u \to 0} \frac {\tan^{-1} \left(1 - u \right) - \tan^{-1} \left(1 - 2u \right)}u & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{u \to 0} \frac {- \frac 1{1+(1-u)^2} + \frac 2{1+(1-2u)^2}}1 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }u \\ & = \frac 12 = \boxed{0.5} \end{aligned}

Prakhar Bindal
Jan 3, 2017

Using the property that arctan(a)-arctan(b) = arctan(a-b/1+ab)

we get limit as xarctan(x+2/2x^2+5x+4)

As term inside arctan is tending to zero hence arctan(x) tends to x

So limit becomes x^2+2x/2x^2+5x+4

Divide numerator and denominator by x^2 to get limit as 0.5

Expand the arctan functions to the first order in Taylor's expansion.(When we were really solving this problem we should expand to higher terms as well but since we're quite convinced that there "should" be a solution.)

arctan ( x + 1 x + 2 ) = arctan ( 1 + 1 / x 1 + 2 / x ) arctan ( 1 1 x ) w h e n x t e n d s t o i n f i n i t y \displaystyle \arctan { \left( \frac { x+1 }{ x+2 } \right) } =\arctan { \left( \frac { 1+1/x }{ 1+2/x } \right) } \approx \arctan { \left( 1-\frac { 1 }{ x } \right) } \quad when\quad x\quad tends\quad to\quad infinity .

The second arctan function is similar.

Therefore,

arctan ( 1 1 x ) = π 4 + 1 1 + 1 ( 1 x ) = π 4 + 1 2 ( 1 x ) \displaystyle \arctan { \left( 1-\frac { 1 }{ x } \right) } =\frac { \pi }{ 4 } +\frac { 1 }{ 1+1 } \left( -\frac { 1 }{ x } \right) =\frac { \pi }{ 4 } +\frac { 1 }{ 2 } \left( -\frac { 1 }{ x } \right)

arctan ( x + 1 x + 2 ) arctan ( x x + 2 ) = arctan ( 1 1 x ) arctan ( 1 2 x ) = π 4 + 1 2 ( 1 x ) [ π 4 + 1 2 ( 2 x ) ] \displaystyle \arctan { \left( \frac { x+1 }{ x+2 } \right) } -\arctan { \left( \frac { x }{ x+2 } \right) } =\arctan { \left( 1-\frac { 1 }{ x } \right) } -\arctan { \left( 1-\frac { 2 }{ x } \right) } =\frac { \pi }{ 4 } +\frac { 1 }{ 2 } \left( -\frac { 1 }{ x } \right) -\left[ \frac { \pi }{ 4 } +\frac { 1 }{ 2 } \left( -\frac { 2 }{ x } \right) \right]

Hence,

lim x x [ arctan ( x + 1 x + 2 ) arctan ( x x + 2 ) ] = lim x x [ 1 2 x ] = 1 2 = 0.5 \displaystyle \lim _{ x\rightarrow \infty }{ x\left[ \arctan { \left( \frac { x+1 }{ x+2 } \right) } -\arctan { \left( \frac { x }{ x+2 } \right) } \right] } =\lim _{ x\rightarrow \infty }{ x\left[ \frac { 1 }{ 2x } \right] } =\frac { 1 }{ 2 } =\boxed{0.5}

Joe Mansley
Jan 1, 2017

Substitute y=1/x and apply l'hopitals rule.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...