Limiting the Inverse Binomial Sum

Calculus Level 5

If S ( n ) = r = 0 n ( 1 ( n r ) ) \text{S}(n) = \displaystyle \sum_{r=0}^n \left( \dfrac{1}{\dbinom{n}{r}} \right)

Evaluate lim n S ( n ) \displaystyle\lim_{n \to \infty} \text{S}(n)

Give your answer to 1 decimal place.


The answer is 2.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ishan Singh
Mar 13, 2015

Given: S ( n ) = r = 0 n 1 ( n r ) \text{S}(n) = \displaystyle \sum_{r=0}^n \dfrac{1}{\dbinom{n}{r}}

S ( n ) = 1 + r = 1 n 1 ( n r ) \implies \text{S}(n) = 1+ \displaystyle \sum_{r=1}^n \dfrac{1}{\dbinom{n}{r}}

S ( n ) = 1 + r = 1 n r n × 1 ( n 1 r 1 ) \implies \text{S}(n) = 1+ \displaystyle \sum_{r=1}^n \dfrac{r}{n} \times \dfrac{1}{\dbinom{n-1}{r-1}} [ since ( n r ) = n r × ( n 1 r 1 ) ] \left[\text{since} \dbinom{n}{r}= \dfrac{n}{r} \times \dbinom{n-1}{r-1} \right]

Also,

S ( n ) = 1 + r = 1 n 1 ( n r ) = 1 + r = 1 n 1 ( n n r + 1 ) = 1 + r = 1 n n r + 1 n 1 ( n 1 n r ) = 1 + r = 1 n n r + 1 n 1 ( n 1 r 1 ) \text{S}(n) = 1+ \sum_{r=1}^n \dfrac{1}{\dbinom{n}{r}} = 1+ \sum_{r=1}^n \dfrac{1}{\dbinom{n}{n-r+1}} = 1+ \sum_{r=1}^n \dfrac{n-r+1}{n} \dfrac{1}{\dbinom{n-1}{n-r}} = 1+ \sum_{r=1}^n \dfrac{n-r+1}{n} \dfrac{1}{\dbinom{n-1}{r-1}} [ since r = a b f ( r ) = r = a b f ( a + b r ) and ( n r ) = ( n n r ) ] \left[ \text{since} \ \displaystyle \sum_{r=a}^b f(r) = \displaystyle \sum_{r=a}^b f(a+b-r) \ \text{and} \ \dbinom{n}{r}=\dbinom{n}{n-r} \right]

Thus, we have,

{ S ( n ) = 1 + r = 1 n r n × 1 ( n 1 r 1 ) S ( n ) = 1 + r = 1 n n r + 1 n 1 ( n 1 r 1 ) \begin{cases} \text{S}(n) = 1+ \displaystyle \sum_{r=1}^n \dfrac{r}{n} \times \dfrac{1}{\dbinom{n-1}{r-1}}\\ \text{S}(n) = 1+ \displaystyle \sum_{r=1}^n \dfrac{n-r+1}{n} \dfrac{1}{\binom{n-1}{r-1}} \end{cases}

Adding the above two expressions, we get,

2 S ( n ) = 2 + r = 1 n ( r n × 1 ( n 1 r 1 ) + n r + 1 n 1 ( n 1 r 1 ) ) 2\text{S}(n) = 2 + \displaystyle \sum_{r=1}^n \left( \dfrac{r}{n} \times \dfrac{1}{\dbinom{n-1}{r-1}} + \dfrac{n-r+1}{n} \dfrac{1}{\binom{n-1}{r-1}} \right)

= 2 + n + 1 n r = 1 n 1 ( n 1 r 1 ) = 2 + \dfrac{n+1}{n} \displaystyle \sum_{r=1}^n \dfrac{1}{\binom{n-1}{r-1}}

= 2 + n + 1 n × S ( n 1 ) = 2 + \dfrac{n+1}{n} \times \text{S}(n-1)

Since n n \to \infty , we have S ( n ) = S ( n 1 ) = S \text{S}(n) = \text{S}(n-1) = \text{S} (say)

2 S = ( n + 1 n ) × S + 2 \implies 2\text{S} = \left(\dfrac{n+1}{n}\right) \times \text{S} +2

S = 2 n n 1 = 2 \implies \text{S} = \dfrac{2n}{n-1} = \boxed{2} [since n n \to \infty ]

NOTE: For the existance of the limit, we can easily prove that S ( n + 1 ) < S ( n ) \text{S}(n+1) < \text{S}(n) for n 4 n \ge 4 , hence the limit exists.

Shivang Jindal
Mar 23, 2015

This problem can easily be tackled using Squeeze theorem :). First of all,note that, for all numbers, ( n 2 ) ( n r ) r [ 2 , n 2 ] \binom{n}{2} \le \binom{n}{r} \forall r \in [2,n-2] Now, r = 0 n 1 ( n r ) = 1 + 1 n + r = 2 n 2 1 ( n r ) + 1 n + 1 2 \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} = 1+\frac{1}{n}+ \sum_{r=2}^{n-2} \frac{1}{\binom{n}{r}} + \frac{1}{n}+1 \ge 2 Also, r = 0 n 1 ( n r ) = 1 + 1 n + r = 2 n 2 1 ( n r ) + 1 n + 1 2 + 2 n + r = 2 n 2 1 ( n 2 ) \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} = 1+\frac{1}{n}+ \sum_{r=2}^{n-2} \frac{1}{\binom{n}{r}} + \frac{1}{n}+1 \le 2+ \frac{2}{n} + \sum_{r=2}^{n-2} \frac{1}{\binom{n}{2}} And, 2 + 2 n + r = 2 n 2 1 ( n 2 ) = 2 + 2 n + r = 2 n 2 2 n ( n 1 ) = 2 + 2 n 6 + 2 n 2 n ( n 1 ) = 2 + 4 n 8 n ( n 1 ) 2+ \frac{2}{n} + \sum_{r=2}^{n-2} \frac{1}{\binom{n}{2}} = 2+ \frac{2}{n} + \sum_{r=2}^{n-2} \frac{2}{n(n-1)} = 2+ \frac{2n-6+2n-2}{n(n-1)} = 2+\frac{4n-8}{n(n-1)}

Hence, 2 r = 0 n 1 ( n r ) 2 + 4 n 8 n ( n 1 ) 2 \le \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} \le 2+\frac{4n-8}{n(n-1)}

Taking limit, and using statement of squeeze theorem, lim n S n = 2 \lim_{n \rightarrow \infty} S_n = 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...