Limitless Limits

Calculus Level 4

lim x 1 cos 2 cos ( 2 x ) x 2 x = ? \displaystyle \lim_{x \rightarrow -1} {\dfrac{\cos{2} - \cos(2x)}{x^2 - |x|}} = \ ?


The answer is 1.81859.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Abhishek Sharma
Apr 21, 2015

lim x 1 cos 2 cos 2 x x 2 x \lim _{ x\rightarrow -1 }{ \frac { \cos { 2 } -\cos { 2x } }{ { x }^{ 2 }-|x| } } As when x < 0 x<0 , x = x |x|=-x , lim x 1 cos 2 cos 2 x x 2 + x \lim _{ x\rightarrow -1 }{ \frac { \cos { 2 } -\cos { 2x } }{ { x }^{ 2 }+x } } Applying L'Hópital Rule, lim x 1 2 sin 2 x 2 x + 1 \lim _{ x\rightarrow -1 }{ \frac { 2\sin { 2x } }{ 2x +1 } } 2 sin 2 2\sin {2}

Archit Boobna
Apr 17, 2015

lim x 1 cos 2 cos 2 x x 2 x \lim _{ x\rightarrow -1 }{ \frac { \cos { 2 } -\cos { 2x } }{ { x }^{ 2 }-|x| } }

Using cos 2 x \cos { 2x } identity,

lim x 1 cos 2 + sin 2 x cos 2 x x 2 x \lim _{ x\rightarrow -1 }{ \frac { \cos { 2 }+\sin ^{ 2 }{ x } -\cos ^{ 2 }{ x } }{ { x }^{ 2 }-|x| } }

Applying L'Hôpital's rule and using ( u 2 ) = 2 u u \left( { u }^{ 2 } \right) '=2uu' ,

lim x 1 0 + ( 2 sin x cos x ) ( 2 ( sin x ) cos x ) 2 x x x \lim _{ x\rightarrow -1 }{ \frac { 0+\left( 2\sin { x } \cos { x } \right) -\left( 2\left( -\sin { x } \right) \cos { x } \right) }{ 2x-\frac { x }{ |x| } } }

Using 2 sin x cos x 2\sin { x } \cos { x } identity,

lim x 1 2 sin 2 x 2 x x x \lim _{ x\rightarrow -1 }{ \frac { 2\sin { 2x } }{ 2x-\frac { x }{ |x| } } }

Substituting x by -1.

lim x 1 ( 2 sin ( 2 ) ) \lim _{ x\rightarrow -1 }{ \left( -2\sin { \left( -2 \right) } \right) }

1.818 \approx \boxed { 1.818 }

Moderator note:

There's an easier to solve this. Can you find it?

@Vaibhav Prasad @Kalash Verma want to share your methods?

Adarsh Kumar - 6 years, 1 month ago

Log in to reply

I will when I get time :)

Vaibhav Prasad - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...