Limitless potential

Calculus Level 1

L = lim n 0 + ( 1 n ) n \large L=\lim\limits_{n \to 0^{+}}\left(\frac{1}{n}\right)^n

Find 1000 L \lfloor 1000L \rfloor


The answer is 1000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

James Watson
Aug 23, 2020

L = lim n 0 + ( 1 n ) n = lim n 0 + e n ln ( 1 n ) = e lim n 0 + n ln ( 1 n ) \begin{aligned} L &= \lim\limits_{n \to 0^{+}}\left(\frac{1}{n}\right)^n \\ &= \lim\limits_{n \to 0^{+}}e^{n\ln\left(\frac{1}{n}\right)} \\ &= e^{\blue{\lim\limits_{n \to 0^{+}} n \ln\left(\frac{1}{n}\right)}} \end{aligned} Now, we just need to find the limit in the exponent: lim n 0 + n ln ( 1 n ) = lim n 0 + n ln ( 1 ) n ln ( n ) = lim n 0 + n ln ( n ) = lim n 0 + ln ( n ) 1 n \begin{aligned} \blue{\lim\limits_{n \to 0^{+}} n \ln\left(\frac{1}{n}\right)} &= \lim\limits_{n \to 0^{+}} n\ln(1) - n\ln(n) \\ &= \lim\limits_{n \to 0^{+}} - n\ln(n) \\ &= \lim\limits_{n \to 0^{+}} \frac{\ln(n)}{\frac{-1}{n}} \\ \end{aligned} Since plugging in 0 0 here gives us a \cfrac{\infty}{\infty} indeterminate form, we can use L'Hopital's Rule and differentiate the numerator and the denominator: lim n 0 + d d x ( ln ( n ) ) d d x ( 1 n ) = lim n 0 + 1 n 1 n 2 = lim n 0 + n = 0 \begin{aligned} \implies \lim\limits_{n \to 0^{+}} \frac{\frac{d}{dx}(\ln(n))}{\frac{d}{dx}\left(\frac{-1}{n}\right)} &= \lim\limits_{n \to 0^{+}} \frac{\frac{1}{n}}{\frac{1}{n^2}} \\ &= \lim\limits_{n \to 0^{+}} n \\ &= \orange{\boxed{0}} \end{aligned}

Now we can plug this in as our exponent: L = e 0 = 1 L = e^{\orange{0}} = \boxed{1}

Since we need 1000 L \lfloor 1000 L \rfloor as our answer, we plug in 1 1 as L L to see that 1000 L = 1000 ( 1 ) = 1000 \lfloor 1000\blue{L} \rfloor = \lfloor 1000\blue{(1)} \rfloor = \green{\boxed{1000}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...