Limitless 5

Calculus Level 3

Solve: lim x ( 2 log 4 ( 3 4 x 7 ) + sin 2 ( x ) x ) \lim_{x \to \infty} \left( \frac{2\log_{4}\left( 3 \sqrt{4x^7}\right)+\sin^2(\sqrt{x})}{\sqrt{x}}\right)


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Maksym Karunos
Aug 7, 2019
  1. Carry out the division. lim x inf ( 2 log 4 3 4 x 7 ) x + sin 2 ( x ) x \displaystyle\lim_{x\rightarrow \inf} \frac{(2 \log_{4}3\sqrt{4x^7})}{\sqrt{x}} + \frac{\sin^2(\sqrt{x})}{\sqrt{x}}

Apply squeeze theorem for sin 2 ( x ) x \displaystyle\frac{\sin^2(\sqrt{x})}{\sqrt{x}}

sin ( x ) \sin(x) is ranging from -1 to 1, sin 2 ( x ) \sin^2(x) is ranging from 0 to 1

lim x inf 0 < lim x inf sin 2 ( x ) < lim x inf 1 \displaystyle\lim_{x\rightarrow \inf} 0 < \displaystyle\lim_{x\rightarrow \inf} \sin^2(\sqrt{x}) < \displaystyle\lim_{x\rightarrow \inf}1

Divide three sides by x \sqrt{x}

lim x inf 0 x < lim x inf sin 2 ( x ) x < lim x inf 1 x \displaystyle\lim_{x\rightarrow \inf} \frac{0}{\sqrt{x}} < \displaystyle\lim_{x\rightarrow \inf} \frac{\sin^2(\sqrt{x})}{\sqrt{x}} < \displaystyle\lim_{x\rightarrow \inf}\frac{1}{\sqrt{x}}

lim x inf 1 x \displaystyle\lim_{x\rightarrow \inf}\frac{1}{\sqrt{x}} = 0 as well as lim x inf 0 x = 0 \displaystyle\lim_{x\rightarrow \inf} \frac{0}{\sqrt{x}} = 0

\therefore lim x inf sin 2 ( x ) x \displaystyle\lim_{x\rightarrow \inf} \frac{\sin^2(\sqrt{x})}{\sqrt{x}} = 0

lim x inf ( 2 log 4 3 4 x 7 ) x + 0 \displaystyle\lim_{x\rightarrow \inf} \frac{(2 \log_{4}3\sqrt{4x^7})}{\sqrt{x}} + 0

Use property of logarithm:

lim x inf log 4 ( 3 4 x 7 ) 2 x = \displaystyle\lim_{x\rightarrow \inf} \frac{ \log_{4}(3\sqrt{4x^7})^2}{\sqrt{x}} = lim x inf log 4 ( 36 x 7 ) x \displaystyle\lim_{x\rightarrow \inf} \frac{ \log_{4}(36x^7)}{\sqrt{x}}

Use another property of logarithm:

lim x inf log 4 ( 36 ) + log 4 x 7 x \displaystyle\lim_{x\rightarrow \inf} \frac{ \log_{4}(36) + \log_{4}x^7}{\sqrt{x}} = lim x inf log 4 ( 36 ) + 7 log 4 x x \displaystyle\lim_{x\rightarrow \inf} \frac{ \log_{4}(36) + 7\log_{4}x}{\sqrt{x}}

We have indeterminate form (infinity over infinity), therefore we can apply L'Hôpital's rule; however, there is another way.

Logarithmic functions grow slower than algebraic.

As x \sqrt{x} goes to infinity faster than 7 log 4 ( x ) 7\log_{4}(x) , lim x inf log 4 ( 36 ) + 7 log 4 x x = 0 \displaystyle\lim_{x\rightarrow \inf} \frac{ \log_{4}(36) + 7\log_{4}x}{\sqrt{x}} = 0

lim x inf ( 2 log 4 3 4 x 7 ) x + sin 2 ( x ) x = 0 \therefore \displaystyle\lim_{x\rightarrow \inf} \frac{(2 \log_{4}3\sqrt{4x^7})}{\sqrt{x}} + \frac{\sin^2(\sqrt{x})}{\sqrt{x}} = \boxed{0}

Please ask questions!

Maksym Karunos - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...