Limits 0/0

Calculus Level 4

lim x 1 f ( x ) x 1 = 2 , lim x 1 [ g ( x ) ( 5 x + 4 4 x 2 + 5 ) ] = 1 \lim _{ x\to1 }{ \frac { f( x ) }{ \sqrt { x } -1 } } =2 , \qquad \lim _{ x\to 1 }{ \left[ g( x ) (\sqrt { 5x+4 } -\sqrt { 4{ x }^{ 2 }+5 } ) \right] }=-1

Let f ( x ) f(x) and g ( x ) g(x) be functions satisfying the equations above. Find lim x 1 [ f ( x ) g ( x ) ] \displaystyle \lim_{x\to1} [ f(x) g(x) ] .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
Jul 9, 2016

I totally agree with M π α μ π i v o ζ , But there is a easier way out . Consider lim x 1 f ( x ) x 1 1 1 = 2 lim x 1 f ( x ) g ( x ) ( 5 x + 4 4 x 2 + 5 ) 1 x = 2 lim x 1 f ( x ) g ( x ) lim x 1 ( 5 x + 4 4 x 2 + 5 ) 1 x = 2 lim x 1 f ( x ) g ( x ) lim x 1 1 2 5 x + 4 5 1 2 4 x 2 + 5 ( 8 x ) 1 2 x = 2 lim x 1 f ( x ) g ( x ) = 2 \text{I totally agree with M} \pi \alpha \mu \pi i v o \zeta , \text{But there is a easier way out . Consider} \\ \displaystyle \lim_{x \to 1} \dfrac{f(x)}{\sqrt{x}-1}\cdot \dfrac{-1}{-1} = 2 \\ \displaystyle \lim_{x \to 1} f(x)\cdot g(x) \cdot \dfrac{\left( \sqrt{5x+4}-\sqrt{4x^2+5}\right)}{1-\sqrt{x}} = 2 \\ \displaystyle \lim_{x \to 1} f(x) g(x) \cdot \displaystyle \lim_{x \to 1} \dfrac{\left( \sqrt{5x+4}-\sqrt{4x^2+5}\right)}{1-\sqrt{x}} = 2 \\ \displaystyle \lim_{x \to 1} f(x) g(x) \cdot \displaystyle \lim_{x \to 1} \dfrac{ \dfrac{1}{2\sqrt{5x+4}}\cdot5-\dfrac{1}{2\sqrt{4x^2+5}}\cdot(8x)}{-\dfrac{1}{2\sqrt{x}}} = 2 \\ \boxed{\displaystyle \lim_{x \to 1} f(x) g(x) = 2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...