Limits #1

Calculus Level 3

lim x ( 2 x 2 + 3 2 x 2 + 5 ) 8 x 2 + 3 \large{\displaystyle{\lim_{x \rightarrow \infty} \left(\dfrac{2x^2+3}{2x^2+5}\right)^{8x^2+3}}}

If the limit above is equal to e m e^m , where m m is an integer, input m m .


The answer is -8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Chew-Seong Cheong
Mar 29, 2017

L = lim x ( 2 x 2 + 3 2 x 2 + 5 ) 8 x 2 + 3 A 1 case, see note. = exp ( lim x ( 8 x 2 + 3 ) ( 2 x 2 + 3 2 x 2 + 5 1 ) ) = exp ( lim x 2 ( 8 x 2 + 3 ) 2 x 2 + 5 ) = exp ( lim x 16 x 2 6 2 x 2 + 5 ) = e 8 \begin{aligned} L & = \lim_{x \to \infty} \left(\frac {2x^2+3}{2x^2+5}\right)^{8x^2+3} & \small \color{#3D99F6} \text{A }1^\infty \text{ case, see note.} \\ & = \exp \left(\lim_{x \to \infty} (8x^2+3)\left(\frac {2x^2+3}{2x^2+5}-1\right)\right) \\ & = \exp \left(\lim_{x \to \infty} \frac {-2(8x^2+3)}{2x^2+5} \right) \\ & = \exp \left(\lim_{x \to \infty} \frac {-16x^2-6}{2x^2+5} \right) \\ & = e^{-8} \end{aligned}

m = 8 \implies m = \boxed{-8}


Note: For lim x a ( f ( x ) g ( x ) ) h ( x ) = 1 \small \lim_{x \to a} \left(\frac {f(x)}{g(x)}\right)^{h(x)} = 1^\infty , we have ( see method 2 ):

lim x a ( f ( x ) g ( x ) ) h ( x ) = exp ( lim x a h ( x ) ( f ( x ) g ( x ) 1 ) ) \small \lim_{x \to a} \left(\frac {f(x)}{g(x)}\right)^{h(x)} = \exp \left(\lim_{x \to a} h(x) \left(\frac {f(x)}{g(x)} - 1 \right) \right)

Yeah, but this 1^infty method works for all f, g, h functions?

Pi Han Goh - 4 years, 2 months ago

Log in to reply

I am trying to find the proof for it. Any reference?

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

If f ( x ) f(x) and g ( x ) 0 g(x) \neq 0 are continuous functions in R \mathbb{R} and f ( x ) g ( x 1 \frac{f(x)}{g(x} \to 1 as x a x \to a this method works.

Guillermo Templado - 4 years, 2 months ago

Old method 1.- \boxed{\text{1.-}} lim x ( 2 x 2 + 3 2 x 2 + 5 ) 8 x 2 + 3 = lim x ( 2 x 2 + 5 2 x 2 + 3 ) ( 8 x 2 + 3 ) = \large{\displaystyle{\lim_{x \rightarrow \infty} \left(\dfrac{2x^2+3}{2x^2+5}\right)^{8x^2+3}}} = \lim_{x \rightarrow \infty} \left(\dfrac{2x^2+5}{2x^2+3}\right)^{-(8x^2+3)} = = lim x ( 1 + 2 2 x 2 + 3 ) ( 8 x 2 + 3 ) = lim x ( 1 + 1 2 x 2 + 3 2 ) ( ( 2 x 2 + 3 ) 2 ) ( ( 8 x 2 + 3 ) 2 x 2 + 3 2 ) = e 8 = \lim_{x \rightarrow \infty} \left(1 +\dfrac{2}{2x^2+ 3}\right)^{-(8x^2+3)} = \lim_{x \rightarrow \infty} \left(1 +\frac{1}{\frac{2x^2+ 3}{2}}\right)^{(\frac{(2x^2 + 3)}{2}) \cdot \left(\frac{-(8x^2 +3)}{\frac{2x^2 + 3}{2}}\right)} = e^{-8} 2.- \boxed{\text{2.-}} lim x ( 2 x 2 + 3 2 x 2 + 5 ) 8 x 2 + 3 = lim x ( 2 x 2 + 5 2 x 2 + 3 ) ( 8 x 2 + 3 ) = \large{\displaystyle{\lim_{x \rightarrow \infty} \left(\dfrac{2x^2+3}{2x^2+5}\right)^{8x^2+3}}} = \lim_{x \rightarrow \infty} \left(\dfrac{2x^2+5}{2x^2+3}\right)^{-(8x^2+3)} = = lim x ( 1 + 2 2 x 2 + 3 ) ( 8 x 2 + 3 ) = e lim x ( 8 x 2 + 3 ) 2 2 x 2 + 3 = e 8 = \lim_{x \rightarrow \infty} \left(1 +\dfrac{2}{2x^2+ 3}\right)^{-(8x^2+3)} = e^{\lim_{x \to \infty} -(8x^2 + 3) \cdot \dfrac{2}{2x^2+ 3}} = e^{-8} due to ln ( 1 + x ) x , as x 0 \ln(1 + x) \sim x, \text{ as } x \to 0

Rahil Sehgal
Mar 29, 2017

Thank you very much

Md Zuhair - 4 years, 2 months ago

Log in to reply

Hey, if you want to show that m m belongs to the set of integers, then the following Latex code would be better:

m \in \mathbb{Z}

This will give the output as

m Z m \in \mathbb{Z} .

Tapas Mazumdar - 4 years, 2 months ago

Good problem but highly over rated .

Prakhar Bindal - 4 years, 2 months ago
Brian Moehring
Mar 29, 2017

Set u = 2 x 2 + 5 u = 2x^2 + 5 . Then the entire limit may be rewritten as lim u ( u 2 u ) 4 u 17 = lim u ( 1 2 u ) 4 u ( 1 2 u ) 17 = e 8 1 17 = e 8 \lim_{u\to\infty} \left(\frac{u-2}{u}\right)^{4u-17} = \lim_{u\to\infty} \left(1 - \frac{2}{u}\right)^{4u} \cdot \left(1 - \frac{2}{u}\right)^{-17} = e^{-8} \cdot 1^{-17} = e^{-8}

Naren Bhandari
Aug 8, 2017

Curtis Clement
Jun 29, 2017

Firstly, note that ( 2 x 2 + 3 2 x 2 + 5 ) 3 = ( 2 + 3 / x 2 2 + 5 / x 2 ) 3 1 a s n ( 1 ) \ ( \frac{2x^2 +3}{2x^2 +5})^3 = ( \frac{2+3/x^2}{2+5/x^2})^3 \rightarrow 1 \quad as \ n \rightarrow \infty \quad (1)

By application of Algebra Of Limits (a.k.a AOL) (quotient rule then product rule). So assuming the given limit exists we have, taking the exponential of the log of the given expression : (and from (1)) lim x ( 2 x 2 + 3 2 x 2 + 5 ) 8 x 2 + 3 = lim x e x p ( 8 x 2 ( L n ( 2 x 2 + 3 ) L n ( 2 x 2 + 5 ) ) \lim_{x \rightarrow \infty} \left(\dfrac{2x^2 +3}{2x^2 +5}\right)^{8x^2 +3} = \lim_{x \rightarrow \infty} exp \left(8x^2 (Ln(2x^2 +3) - Ln(2x^2 +5)\right) Letting u = 2 x 2 \ u = 2x^2 and using continuity of e x p : ( 0 , ) R \ exp:(0, \infty) \rightarrow \mathbb{R} = lim u e x p ( 4 u ( L n ( u + 3 ) L n ( u + 5 ) ) ) = e x p ( lim u ( 4 u ( L n ( u + 3 ) L n ( u + 5 ) ) ) ) ( 2 ) \ = \lim_{u \rightarrow \infty} exp \left(4u (Ln(u +3) - Ln(u+5))\right) = exp \left( \lim_{u \rightarrow \infty} (4u (Ln(u +3) - Ln(u+5)) ) \right) \quad (2) Now lim u u 2 ( u + 3 ) ( u + 5 ) \lim_{u \rightarrow \infty} \frac{u^2}{(u+3)(u+5)} exists and equals 1 (by same method used to obtain (1)) so we can apply L'Hopital's Rule (and AOL) to (2) as follows: = e x p ( 4 lim u d d u ( L n ( u + 3 ) L n ( u + 5 ) ) d d u ( 1 / u ) ) = e x p ( 4 lim u 1 u + 3 1 u + 5 1 u 2 ) = e x p ( 8 lim u u 2 ( u + 3 ) ( u + 5 ) ) \ = exp \left(4 \lim_{u \rightarrow \infty} \dfrac{\frac{d}{du} (Ln(u+3) - Ln(u+5)) }{\frac{d}{du}(1/u)} \right) = exp \left(4 \lim_{u \rightarrow \infty} \dfrac{\frac{1}{u+3} - \frac{1}{u+5} }{ - \frac{1}{u^2}} \right) = exp \left(-8 \lim_{u \rightarrow \infty} \frac{u^2}{(u+3)(u+5)} \right) = e x p ( 8 ) \ = \boxed{exp(-8)}

Yash Ghaghada
Jun 14, 2017

(1-1/f(x))^f(x) >>>>>> as f(x) tends infinity, this tends to e^(-1)

Use this as a hint

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...