Is this the double limit?

Calculus Level 2

f ( n , θ ) = r = 1 n [ 1 tan 2 ( θ 2 r ) ] \large \displaystyle f(n, \theta) = \prod_{r=1}^n \left [1 - \tan^2 \left ( \frac \theta {2^r} \right ) \right]

Suppose we have a function of f ( n , θ ) f(n,\theta) as above, find the value of lim θ 0 lim n f ( n , θ ) \displaystyle \lim_{\theta\to 0}\lim_{n\to \infty} f(n, \theta) .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Lie
Mar 26, 2018

L = lim θ 0 lim n r = 1 n [ 1 tan 2 ( θ 2 r ) ] = lim θ 0 lim n r = 1 n cos 2 ( θ 2 r ) sin 2 ( θ 2 r ) cos 2 ( θ 2 r ) = lim θ 0 lim n r = 1 n cos 2 ( θ 2 r 1 ) cos 2 ( θ 2 r ) = lim θ 0 cos 2 θ = 1 \begin{aligned} L&=\lim_{\theta\to 0}\lim_{n\to \infty}\prod_{r=1}^n\left [1 - \tan^2 \left(\frac\theta {2^r}\right )\right] \\&=\lim_{\theta\to 0}\lim_{n\to \infty}\prod_{r=1}^n \frac{\cos^2\left(\frac\theta {2^r}\right)-\sin^2\left(\frac\theta {2^r}\right)}{\cos^2\left(\frac\theta {2^r}\right)} \\&=\lim_{\theta\to 0}\lim_{n\to \infty}\prod_{r=1}^n \frac{\cos^2\left(\frac\theta {2^{r-1}}\right)}{\cos^2\left(\frac\theta {2^r}\right)} \\&=\lim_{\theta\to 0}\cos^2\theta \\&=\boxed 1 \end{aligned}

check line 3!

Natalia Dcruz - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...