Limits #2

Calculus Level 3

lim n ( n 2 n 3 3 + n ) = a b \lim_{ n \to \infty} \left(\sqrt[3] {n^{2} - n^{3}} + n \right) = \frac{a}{b}

The equation above holds true for positive coprime integers a a and b b . Find a + b a + b .

Post your innovative solutions.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

U Z
Oct 26, 2014

n ( 1 n 1 3 + n ) n( \sqrt[3]{ \frac{1}{n} - 1} + n)

= n ( ( 1 n 1 ) 1 3 + 1 1 3 ) = n\Big(( \frac{1}{n} - 1 )^{\frac{1}{3}} + 1^{\frac{1}{3}})

now a + b = a 2 + b 3 a 2 a b + b 2 a + b =\frac{ a^{2} + b^{3}}{a^{2} - ab +b^{2}}

thus

n ( ( 1 n 1 ) + 1 ( 1 n 1 ) 2 3 ( 1 n 1 ) 1 3 + 1 ) = 1 3 n ( \frac{( \frac{1}{n} - 1) + 1}{ ( \frac{1}{n} - 1)^{\frac{2}{3}} - (\frac{1}{n} - 1)^{\frac{1}{3}} + 1}) = \frac{1}{3}

Nice solution Megh. But you forget to take brackets in 2nd step correct it.

Sanjeet Raria - 6 years, 7 months ago

Log in to reply

Oh thanks @Sanjeet Raria

U Z - 6 years, 7 months ago
Krishna Sharma
Oct 26, 2014

l i m n ( n 2 n 3 ) 1 3 + n \displaystyle lim_{n \to \infty } (n^{2} - n^{3})^{\frac{1}{3}} + n

Now take n 3 -n^{3} common from root

n ( 1 1 n ) 1 3 + n \displaystyle -n(1 - \frac{1}{n})^{\frac{1}{3}} + n

Now as n n \to \infty

1 n 0 \frac{1}{n} \to 0

Binomial says

( 1 + x ) n = 1 + n x \displaystyle (1 + x)^{n} = 1 + nx (when x <<< 1)

lim n n ( 1 1 3 n ) + n = n + 1 3 + n = 1 3 \displaystyle \lim_{n \to \infty} -n( 1 - \frac{1}{3n}) + n = -n + \frac{1}{3} + n = \boxed{\frac{1}{3}}

Good solution Really nice

U Z - 6 years, 7 months ago
Chew-Seong Cheong
May 12, 2018

L = lim n ( n 2 n 3 3 + n ) = lim n n ( 1 n 1 3 + 1 ) = lim n n ( 1 1 1 n 3 ) By Taylor’s series expansion = lim n n ( 1 ( 1 1 3 n 1 9 n 2 5 81 n 3 ) ) = lim n ( 1 3 + 1 9 n + 5 81 n 2 + ) = 1 3 \begin{aligned} L & = \lim_{n \to \infty} \left(\sqrt[3]{n^2-n^3} + n \right) \\ & = \lim_{n \to \infty} n \left(\sqrt[3]{\frac 1n -1} + 1 \right) \\ & = \lim_{n \to \infty} n \left(1 - {\color{#3D99F6} \sqrt[3]{1- \frac 1n}} \right) & \small \color{#3D99F6} \text{By Taylor's series expansion} \\ & = \lim_{n \to \infty} n \left(1 - {\color{#3D99F6} \left(1- \frac 1{3n} - \frac 1{9n^2} - \frac 5{81n^3} - \cdots \right)} \right) \\ & = \lim_{n \to \infty} \left( \frac 13 + \frac 1{9n} + \frac 5{81n^2} + \cdots \right) \\ & = \frac 13 \end{aligned}

Therefore, a + b = 1 + 3 = 4 a+b=1+3=\boxed{4} .

Tapas Mazumdar
May 12, 2018

L = lim n n 2 n 3 3 + n = lim n n 1 n 1 3 + n = lim n n ( 1 n 1 3 + 1 ) = lim n 1 n 1 3 + 1 1 n 0 0 case so apply L’Hopital’s Rule = lim n 1 3 ( 1 n 1 ) 2 / 3 = 1 3 \begin{aligned} L &= \displaystyle \lim_{n \to \infty} \sqrt[3]{n^2- n^3} + n \\ &= \lim_{n \to \infty} n \sqrt[3]{\dfrac1n -1} + n \\ &= \lim_{n \to \infty} n \left( \sqrt[3]{\dfrac1n -1} + 1 \right) \\ &= \lim_{n \to \infty} \dfrac{\sqrt[3]{\frac1n -1} + 1}{\frac1n} & \small\color{#3D99F6}{\dfrac00 \text{ case so apply L'Hopital's Rule}} \\ &= \lim_{n \to \infty} \dfrac 13 \cdot {\left( \dfrac1n -1 \right)}^{{-2}/{3}} \\ &= \boxed{\dfrac 13} \end{aligned}

In getting the closest value (though not exactly), I let infinity be equal to 999999.. Upon substituting, I got the answer 0.333... which is equal to 1/3.. hence, 1+3=4..

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...