Limits-2

Calculus Level 3

Find lim x 0 1 cos x cos 2 x x 2 \displaystyle \lim_{x \rightarrow 0} \dfrac{ 1- \cos x \sqrt{\cos2x}}{x^2}

Try to solve it without L'Hopital's rule


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ting Sie Kim
Mar 29, 2015

Pi Han Goh
Mar 1, 2015

For small x x , cos x 1 x 2 2 \cos x \approx 1 - \frac {x^2}{2} , and ( 1 + x ) n 1 + n x (1 + x)^n \approx 1 + nx

lim x 0 1 cos x cos 2 x x 2 = lim x 0 1 ( 1 x 2 2 ) 1 2 x 2 x 2 = lim x 0 2 ( 2 x 2 ) ( 1 x 2 ) 2 x 2 = lim x 0 3 x 2 2 = 1.5 \begin{aligned} \displaystyle \lim_{x \to 0} \frac {1 - \cos x \sqrt{ \cos 2x } }{x^2} & = & \lim_{x \to 0} \frac {1 - \left (1 - \frac {x^2}{2} \right ) \sqrt{1 - 2x^2}}{x^2} \\ \displaystyle & = & \lim_{x \to 0} \frac {2 - (2-x^2)(1 - x^2)}{2x^2} \\ \displaystyle & = & \lim_{x \to 0} \frac {3-x^2}{2} = \boxed{1.5} \\ \end{aligned}

Ivan Martinez
Mar 22, 2015

Applied L'Hospital Rule twice, and got 1/2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...