Induction Limit

Calculus Level 2

lim x 1 x n + x n 1 + + x n x 1 = ? \large \lim_{x \to 1}\frac {x^{n} + x^{n-1} + \ldots + x - n}{x - 1} = \ ?

n 2 n^2 Limit does not exist n ( n + 1 ) 2 \frac {n(n + 1)}{2} n n

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chinmay Kurade
Jul 21, 2015

Splitting n into 1 n times we have lim x 1 x n 1 + x n 1 1 + + x 1 x 1 \lim_{x \to 1} \frac {x^n - 1 + x^{n-1}- 1 + \dots + x- 1}{x-1} Which gives lim x 1 x n 1 x 1 + x n 1 1 x 1 + + x 1 x 1 \lim_{x \to 1} \frac {x^n - 1}{x-1}+\frac {x^{n-1}-1}{x-1} + \dots +\frac {x-1}{x-1} Then using the standard form lim x a x n x a x a = n a n 1 \lim_{x\to a} \frac {x^n-x^a}{x-a}=na^{n-1} we get the series of {n+(n-1)+(n-2)....1}; which is equal to n ( n + 1 ) 2 \frac {n(n+1)}{2}

I think you can make it even more beautiful:

In your 2th equation you get all the derivative for x^n at the point x=1 (could be made clearer!), namely n*x^(n-1) and then if you set x = 1, you get n + n(-1) + .... + 2+ 1 and this is the well known identy n(n+1)/2

:)

A pity I missclicked^^, because I really like this problem, also you approach.

Alisa Meier - 5 years, 10 months ago
Deep Shah
Jul 21, 2015

Both numerator and denominator were 0 so 0/0.

Applying L'Hospital Theorem and then replacing 1 will give

i = 1 3 i \sum_{i=1}^3 i

ans : n(n+1)/2

OR

( ( x n 1 ) + ( x n 1 1 ) + . . . + ( x 1 ) ) / ( x 1 ) ((x^{n} - 1) + (x^{n-1} - 1) + ... + (x- 1))/(x-1)

dividing we get

( x n 1 + x n 2 + . . . + 1 ) + ( x n 2 + x n 3 + . . . + 1 ) + . . . + 1 ( x^{n-1} + x^{n-2} + ... + 1) + ( x^{n-2} + x^{n-3} + ... + 1) + ... + 1

putting x = 1

( n ) + ( n 1 ) + . . . + 1 (n) + (n-1) + ... + 1

ANS : ans : n(n+1)/2

Can you do this without using L'Hospital Theorem?

Chinmay Kurade - 5 years, 10 months ago

Log in to reply

you can check my updated answer

your wish is my command ;)

Deep Shah - 5 years, 10 months ago

Let use binomial expansion formulae

Let x = 1 + δ \displaystyle x=1+\delta

lim x 1 Σ i = 1 n x i n x 1 = lim δ 0 Σ i = 1 n ( 1 + δ ) i n δ \displaystyle \lim_{x \rightarrow 1} \dfrac{\Sigma_{i=1}^{n} x^{i}-n}{x-1}=\lim_{\delta \rightarrow 0}\dfrac{\Sigma_{i=1}^{n} (1+\delta)^{i}-n}{\delta}

( 1 + δ ) i = 1 + i δ \displaystyle (1+\delta)^{i}=1+i\delta

lim δ 0 n + δ n ( n + 1 ) 2 n δ \displaystyle \lim_{\delta \rightarrow 0} \dfrac{n+\delta \dfrac{n(n+1)}{2}-n}{\delta}

lim x 1 Σ i = 1 n x i n x 1 = n ( n + 1 ) 2 \displaystyle \lim_{x \rightarrow 1} \dfrac{\Sigma_{i=1}^{n} x^{i}-n}{x-1}=\boxed{\dfrac{n(n+1)}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...