Limits!

Calculus Level 4

lim x 0 + e x x 1 x x [ ( x 2 ) x 1 ] 2 = ? \large\lim_{x\to0^+} \dfrac{ e^{x^x - 1} - x^x}{[(x^2)^x - 1]^2} = \, ?

1 1 1 8 \frac18 3 2 \frac32 1 4 \frac14

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
May 22, 2016

We have to evaluate lim x 0 + e x x 1 x x ( x 2 x 1 ) 2 = lim x 0 + e x x 1 x x ( x x + 1 ) 2 ( x x 1 ) 2 = 1 4 lim x 0 + e x x 1 x x ( x x 1 ) 2 Using LH rule, we get = 1 4 lim x 0 + e x x 1 x x ( 1 + ln x ) x x ( 1 + ln x ) 2 ( x x 1 ) x x ( 1 + ln x ) = 1 8 lim x 0 + e ( x x 1 ) 1 ( x x 1 ) Using Formula lim f ( x ) 0 e f ( x ) 1 f ( x ) = 1 Our answer is 1 8 \text{We have to evaluate } \displaystyle \lim_{x \to 0^{+} } \dfrac{ e^{x^{x}-1}-x^{x} }{(x^{2x}-1)^2} \\ \displaystyle = \lim_{x \to 0^{+} } \dfrac{ e^{x^{x}-1}-x^{x} }{(x^{x}+1)^2(x^{x}-1)^2} \\ = \dfrac14\displaystyle \lim_{x \to 0^{+} } \dfrac{ e^{x^{x}-1}-x^{x} }{(x^{x}-1)^2} \\ \text{Using LH rule, we get } \\ = \dfrac14\displaystyle \lim_{x \to 0^{+} } \dfrac{ e^{x^{x}-1}\cdot x^{x}(1+\ln{x})-x^{x}(1+\ln{x}) }{2(x^{x}-1)\cdot x^{x}(1+\ln{x})} \\ = \dfrac18\displaystyle \lim_{x \to 0^{+} } \dfrac{ e^{(x^{x}-1)}-1 }{(x^{x}-1)} \\ \text{Using Formula } \displaystyle \lim_{f(x) \to 0 } \dfrac{e^{f(x)}-1}{f(x)}=1 \\ \text{Our answer is } \color{#3D99F6}{\boxed{\dfrac{1}8}}

Nice ! Upvoted :D

Samanvay Vajpayee - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...