Limits

Calculus Level 3

lim x 0 x tan 2 x 2 x tan x ( 1 cos 2 x ) 2 = ? \large \lim_{x\to 0 } \dfrac{x \tan 2x - 2x \tan x}{ (1-\cos 2x)^2 } = \, ?

1 3 -\frac13 1 4 \frac14 1 2 \frac12 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim x 0 x tan 2 x 2 x tan x ( 1 cos 2 x ) 2 = lim x 0 x 2 tan x 1 tan 2 x 2 x tan x ( 1 1 + 2 sin 2 x ) 2 = lim x 0 x ( 2 tan x ) ( 1 1 + tan 2 x ) 4 sin 4 x ( 1 tan 2 x ) = lim x 0 x tan 2 x tan 2 x 4 sin 4 x = lim x x tan 2 x sin 2 x 4 sin 4 x cos 2 x = lim x 0 x tan 2 x 4 sin 2 x cos 2 x = lim x 0 x tan 2 x sin 2 2 x = lim x 0 x sin 2 x sin 2 2 x cos 2 x = lim x 0 x sin 2 x cos 2 x = lim x 0 2 x sin 4 x = lim x 0 1 2 sin 4 x 4 x Divide up and down by 4 x . = 1 2 \begin{aligned} L & = \lim_{x \to 0} \frac {x\tan 2x-2x\tan x}{(1-\cos 2x)^2} \\ & = \lim_{x \to 0} \frac {x\frac {2\tan x}{1-\tan^2x}-2x\tan x}{(1-1+2\sin^2x)^2} \\ & = \lim_{x \to 0} \frac {x{\color{#3D99F6}(2\tan x)}(1-1+\tan^2 x)}{4\sin^4x{\color{#3D99F6}(1-\tan^2x)}} \\ & = \lim_{x \to 0} \frac {x \ {\color{#3D99F6}\tan 2x} \ {\color{#D61F06}\tan^2 x}}{4\sin^4x} \\ & = \lim_{x \to \infty} \frac {x \tan 2x \ {\color{#D61F06}\sin^2 x}}{4\sin^4x \ {\color{#D61F06}\cos^2 x}} \\ & = \lim_{x \to 0} \frac {x \tan 2x}{\color{#3D99F6}4\sin^2x \cos^2 x} \\ & = \lim_{x \to 0} \frac {x \ {\color{#D61F06}\tan 2x}}{\color{#3D99F6}\sin^2 2x} \\ & = \lim_{x \to 0} \frac {x \ {\color{#D61F06}\sin 2x}}{\sin^2 2x \ {\color{#D61F06} \cos 2x}} \\ & = \lim_{x \to 0} \frac x{\color{#3D99F6}\sin 2x \cos 2x} \\ & = \lim_{x \to 0} \frac {{\color{#3D99F6}2} x}{\color{#3D99F6}\sin 4x} \\ & = \lim_{x \to 0} \frac {\frac 12}{\frac {\sin 4x}{4x}} & \small \color{#3D99F6} \text{Divide up and down by } 4x. \\ & = \boxed{\dfrac 12} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...