Limits 5

Calculus Level 1

Find lim x 0 x sin x x 2 \displaystyle\lim_{x \rightarrow 0} \displaystyle\frac{x-\sin x}{x^{2}}

3 0 2 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zhen Xian Hew
Jun 8, 2015

The technique is to use L’Hopital’s rule to solve the limit. \text{The technique is to use L'Hopital's rule to solve the limit.}

Given, \text{Given,}

lim x 0 x sin x x 2 \displaystyle\lim_{x \to 0}\displaystyle\frac {x - \sin x}{x^{2}} = 0 0 \displaystyle\frac {0}{0}

which is undefined when 0 is substitute for \text{which is undefined when 0 is substitute for} x . x .

Thus, by applying L’Hopital’s rule, the derivative of the numerator and the \text{Thus, by applying L'Hopital's rule, the derivative of the numerator and the}

denominator is taken separately, then, take the limit of the function. \text{denominator is taken separately, then, take the limit of the function.}

lim x 0 x + ( sin x ) x 2 \displaystyle\lim_{x \to 0}\displaystyle\frac {x + (-\sin x)}{x^{2}} = lim x 0 [ 1 + ( cos x ) 2 x ] \displaystyle\lim_{x \to 0}\displaystyle\left [\frac {1 + (-\cos x)}{2x}\right ] = 1 + ( 1 ) 0 \displaystyle\frac{1 + (-1)}{0} = 0 0 \displaystyle\frac {0}{0}

which is still undefined when the limit is evaluated. \text{which is still undefined when the limit is evaluated.}

Apply the rule again to yield, and take the limit. \text{Apply the rule again to yield, and take the limit.}

lim x 0 1 + ( cos x ) 2 x \displaystyle\lim_{x \to 0}\displaystyle\frac{1 + (-\cos x)}{2x} = lim x 0 [ sin x 2 ] \displaystyle\lim_{x \to 0} \displaystyle\left [\frac {\sin x}{2}\right ] = 0 2 \displaystyle\frac{0}{2} = 0 \displaystyle{0}

Since, the \text{Since, the} sin 0 = 0 \displaystyle\sin 0^\circ = 0 and \text{and} 0 n = 0 \displaystyle\frac {0}{n} = 0 , where n is any integer \text{, where n is any integer} and n \text{and n} 0 \neq 0 . Therefore, the limit of the function is defined when x is approaches 0. \text{Therefore, the limit of the function is defined when x is approaches 0.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...