Limits

Calculus Level 3

Evaluate the limit

lim θ 0 sin θ sin 2 θ 1 cos θ \large \lim_{\theta \rightarrow 0} \dfrac{\sin \theta \sin 2\theta}{1-\cos \theta}

2 3 4 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

lim θ 0 sin θ sin 2 θ 1 cos θ \large \displaystyle \lim_{\theta \rightarrow 0} \dfrac{\sin\theta\sin2\theta}{1-\cos\theta}

= lim θ 0 sin θ ( 2 ) ( sin θ ) ( cos θ ) 1 cos θ \large \displaystyle=\lim_{\theta \to 0} \dfrac{\sin\theta(2)(\sin\theta)(\cos\theta)}{1-\cos\theta}

= lim θ 0 2 sin 2 cos θ 1 cos θ \large \displaystyle=\lim_{\theta \to 0} \dfrac{2\sin^2\cos\theta}{1-\cos\theta}

= lim θ 0 2 ( 1 cos 2 θ ) ( cos θ ) 1 cos θ \large \displaystyle=\lim_{\theta \to 0} \dfrac{2(1-\cos^2\theta)(\cos\theta)}{1-\cos\theta}

= lim θ 0 2 ( 1 cos θ ) ( 1 + cos θ ) ( cos θ ) 1 cos θ \large \displaystyle=\lim_{\theta \to 0} \dfrac{2(1-\cos\theta)(1+\cos\theta)~(\cos\theta)}{1-\cos\theta}

= lim θ 0 ( 2 ) ( 1 + cos θ ) ( cos θ ) \large \displaystyle=\lim_{\theta \to 0} {(2)(1+\cos\theta)(\cos\theta)}

= 2 ( 1 + 1 ) ( 1 ) \large=2(1+1)(1)

= 2 ( 2 ) \large=2(2)

= 4 \large=4

Nice solution. One minor typo on line 2.

Marta Reece - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...