Limits

Calculus Level 3

If, for x ( 0 , 1 4 ) x \in \left(0, \frac 14\right) , the derivative of tan 1 ( 6 x x 1 9 x 3 ) \tan^{-1} \left(\dfrac {6x\sqrt x}{1-9x^3}\right) is x g ( x ) \sqrt x \cdot g(x) , find g ( x ) g(x) .

9 1 + 9 x 3 \frac 9{1+9x^3} 3 x 1 9 x 3 \frac {3x}{1-9x^3} 3 1 + 9 x 3 \frac 3{1+9x^3} 3 x x 1 9 x 3 \frac {3x\sqrt x}{1-9x^3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 26, 2017

Let y = tan 1 ( 6 x x 1 9 x 3 ) y = \tan^{-1}\left(\dfrac {6x\sqrt x}{1-9x^3} \right) , then we have:

tan y = 6 x x 1 9 x 3 = 2 ( 3 x x ) 1 ( 3 x x ) 2 tan y 2 = 3 x x Differentiate both sides w.r.t. x sec 2 y 2 d y d x = 9 2 x d y d x = 9 x 1 + tan 2 y 2 = 9 x 1 + ( 3 x x ) 2 = x 9 1 + 9 x 3 g ( x ) = 9 1 + 9 x 3 \begin{aligned} \tan y & = \frac {6x\sqrt x}{1-9x^3} \\ & = \frac {2{\color{#3D99F6}(3x\sqrt x)}}{1-{\color{#3D99F6}(3x\sqrt x)}^2} \\ \implies \tan \frac y2 & = 3x\sqrt x & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ {\color{#3D99F6}\sec^2 \frac y2} \frac {dy}{dx} & = \frac 92 \sqrt x \\ \implies \frac {dy}{dx} & = \frac {9\sqrt x}{\color{#3D99F6} 1+\tan^2 \frac y2} \\ & = \frac {9\sqrt x}{1+(3x\sqrt x)^2} \\ & = \sqrt x \cdot \frac 9{1+9x^3} \\ \implies g(x) & = \boxed{\dfrac 9{1+9x^3}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...