Limits

Calculus Level 4

lim x π / 2 ( 1 tan x 2 ) ( 1 sin x ) ( 1 + tan x 2 ) ( π 2 x ) 3 = ? \large \lim_{x \to \pi / 2} \frac {\left(1-\tan \frac x2\right)(1-\sin x)}{\left(1+\tan \frac x2\right)(\pi - 2x)^3} = \ ?


The answer is 0.03125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 26, 2017

Relevant wiki: Half Angle Tangent Substitution

L = lim x π / 2 ( 1 tan x 2 ) ( 1 sin x ) ( 1 + tan x 2 ) ( π 2 x ) 3 = lim x π / 2 ( 1 tan x 2 ) ( 1 sin x ) 8 ( 1 + tan x 2 ) ( π 2 x ) 3 Let u = π 2 x x = π 2 u = lim u 0 ( 1 tan ( π 4 u 2 ) ) ( 1 sin ( π 2 u ) ) 8 ( 1 + tan ( π 4 u 2 ) ) u 3 = lim u 0 tan u 2 ( 1 cos u ) 8 u 3 By half-angle tangent substitution = lim u 0 tan u 2 ( 1 1 tan 2 u 2 1 + tan 2 u 2 ) 8 u 3 = lim u 0 tan 2 u 2 sin u 8 u 3 = lim u 0 1 32 ( tan u 2 u 2 ) 2 sin u u = 1 32 = 0.03125 \begin{aligned} L & = \lim_{x \to \pi / 2} \frac {\left(1-\tan \frac x2\right)(1-\sin x)}{\left(1+\tan \frac x2\right)(\pi - 2x)^3} \\ & = \lim_{x \to \pi / 2} \frac {\left(1-\tan \frac x2\right)(1-\sin x)}{8\left(1+\tan \frac x2\right){\color{#3D99F6} \left(\frac \pi 2 - x\right)}^3} & \small \color{#3D99F6} \text{Let }u = \frac \pi 2 - x \implies x = \frac \pi 2 - u \\ & = \lim_{\color{#3D99F6} u \to 0} \frac {{\color{#D61F06}\left(1-\tan \left(\frac \pi 4 - \frac u2 \right) \right)}\left(1-\sin \left(\frac \pi 2 - u \right)\right)}{8{\color{#D61F06}\left(1+\tan \left(\frac \pi 4 - \frac u2 \right) \right)}{\color{#3D99F6} u}^3} \\ & = \lim_{u \to 0} \frac {{\color{#D61F06}\tan \frac u2} \left(1-{\color{#3D99F6}\cos u} \right)}{8u^3} & \small \color{#3D99F6} \text{By half-angle tangent substitution} \\ & = \lim_{u \to 0} \frac {\tan \frac u2 \left(1-{\color{#3D99F6}\frac {1-\tan^2 \frac u2}{1+\tan^2 \frac u2}} \right)}{8u^3} \\ & = \lim_{u \to 0} \frac {\tan^2 \frac u2 \sin u}{8u^3} \\ & = \lim_{u \to 0} \frac 1{32} \left(\frac {\tan \frac u2}{\frac u2}\right)^2 \frac {\sin u}u \\ & = \frac 1{32} = \boxed{0.03125} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...