Limits

Calculus Level 3

Let y y be an implicit function of x x defined by x 2 x 2 x x cot y 1 = 0 x^{2x} - 2x^x \cot y - 1 = 0 . Find y ( 1 ) y'(1) .

log 2 -\log 2 1 -1 1 1 log 2 \log 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 25, 2017

x 2 x 2 x x cot y 1 = 0 Differentiate both sides w.r.t. x 2 ( ln x + 1 ) x 2 x 2 ( ln x + 1 ) x x cot y + 2 x x csc 2 y d y d x = 0 2 ( ln 1 + 1 ) 2 ( ln 1 + 1 ) cot y ( 1 ) + 2 csc 2 y ( 1 ) d y d x x = 1 = 0 See note: cot y ( 1 ) = 0 , csc y ( 1 ) = 1 2 + 2 d y d x x = 1 = 0 d y d x x = 1 = 1 \begin{aligned} x^{2x} - 2x^x \cot y - 1 & = 0 & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ 2(\ln x + 1)x^{2x} - 2(\ln x +1)x^x \cot y + 2x^x \csc^2 y \frac {dy}{dx} & = 0 \\ 2(\ln 1 + 1) - 2(\ln 1 +1) \cot y(1) + 2 \csc^2 y (1) \frac {dy}{dx}\bigg|_{x=1} & = 0 & \small \color{#3D99F6} \text{See note: }\cot y(1) = 0, \ \csc y(1) = 1 \\ 2 + 2\frac {dy}{dx} \bigg|_{x=1} & = 0 \\ \implies \frac {dy}{dx} \bigg|_{x=1} & = \boxed{-1} \end{aligned}


Note:

x 2 x 2 x x cot y 1 = 0 1 2 2 ( 1 1 ) cot y ( 1 ) 1 = 0 cot y ( 1 ) = 0 \begin{aligned} x^{2x} - 2x^x \cot y - 1 & = 0 \\ 1^2 - 2(1^1) \cot y(1) - 1 & = 0 \\ \implies \cot y(1) & = 0 \end{aligned}

Sabhrant Sachan
Sep 25, 2017

x 2 x 2 x x cot y 1 = 0 ( x x ) 2 2 ( x x ) ( cot y ) + cot 2 y 1 cot 2 y = 0 ( x x cot y ) 2 = 1 + cot 2 y x x cot y = csc y x x = cot y + csc y x x ( 1 + ln x ) = csc 2 y × y csc y cot y × y x x ( 1 + ln x ) = csc y ( csc y + cot y ) y y = x x ( 1 + ln x ) x x csc y y ( 1 ) = 1 1 ( 1 + ln 1 ) csc ( y ( 1 ) ) sin ( y ( 1 ) ) From our Original Equation , 1 2 2 × 1 1 cot y ( 1 ) 1 = 0 y ( 1 ) = π 2 y ( 1 ) = sin ( y ( 1 ) ) 1 x^{2x}-2x^x\cot{y}-1=0 \\ (x^x)^2-2(x^x)(\cot{y})+\cot^2{y}-1-\cot^2{y}=0 \\ (x^x-\cot{y})^2=1+\cot^2{y} \\ x^x-\cot{y}=\csc{y} \\ x^x=\cot{y}+\csc{y} \\ x^x(1+\ln{x})=-\csc^2{y}\times y^{'}-\csc{y}\cot{y}\times y^{'} \\ x^x(1+\ln{x})=-\csc{y}(\csc{y}+\cot{y})y^{'} \\ y^{'}=-\dfrac{x^x(1+\ln{x})}{x^x\csc{y}} \\ y^{'}(1)=-\dfrac{1^1(1+\ln{1})}{\csc{(y(1))}} \implies -\sin{(y(1))} \\ \text{From our Original Equation , } 1^{2}-2 \times 1^1\cot{y(1)}-1=0 \implies y(1)=\dfrac{\pi}{2} \\ y^{'}(1)=-\sin{(y(1))} \implies \color{#3D99F6}{\boxed{-1}}

Sarthak Sahoo
May 13, 2020

cot y = 1 x 2 x 2 x x -\cot y = \displaystyle\frac{1-x^{2x}}{2x^x}

tan y = 2 x x 1 x 2 x -\tan y= \displaystyle\frac{2 x^x}{1-x^{2x}}

y = tan 1 ( 2 x x 1 x 2 x ) y = -\displaystyle\tan^{-1}(\frac{2x^x}{1-x^{2x}})

y = 2 tan 1 ( x x ) y =-2\tan^{-1}(x^x)

d y d x = 2 x x ( ln x + 1 ) ( 1 + x 2 x ) \displaystyle\frac{dy}{dx}=-\frac{2x^x(\ln x+1)}{(1+x^{2x})}

( d y d x ) x = 1 = 1 \displaystyle\left (\frac{dy}{dx}\right)_{x=1}=-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...