Find the limit of the following expression:
Inspiration: New Methods for Calculations of Some Limits
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L = n → ∞ lim ( n + 1 ( n + 1 ) ! − n n ! ) = n → ∞ lim ( ( 2 ( n + 1 ) π ) 2 ( n + 1 ) 1 ⋅ e n + 1 − ( 2 n π ) 2 n 1 ⋅ e n ) = e 1 n → ∞ lim ( n ( ( n + 1 ) 2 ( n + 1 ) 1 − n 2 n 1 ) + ( n + 1 ) 2 ( n + 1 ) 1 ) = e 1 n → ∞ lim n ( n + 1 − n ) d n d n 2 n 1 + exp ( n → ∞ lim 2 ( n + 1 ) ln ( n + 1 ) − 1 ) = e 1 n → ∞ lim n 1 + 2 n 1 ( 2 n 2 1 − 2 n 2 ln n ) + exp ( n → ∞ lim 2 n + 1 1 − 1 ) = 0 + e 0 − 1 = e 1 By Stirling’s formula: n ! ∼ 2 n π ( e n ) n Note that n → ∞ lim ( 2 π ) 2 ( n + 1 ) 1 = n → ∞ lim ( 2 π ) 2 n 1 = 1 By theorem 1 (see reference) An ∞ / ∞ case, L’H o ˆ pital’s rule applies. Differentiate up and down w.r.t. n
References: