Limits ( 2 )

Calculus Level pending

Find the limit of the following expression:

lim n ( ( n + 1 ) 2 ( n + 1 ) ! n + 1 n 2 n ! n ) \lim_{n\to\infty} \left(\frac{(n+1)^2}{\sqrt[n+1]{(n+1)!}} - \frac{n^2}{\sqrt [n]{n!}} \right)

Inspiration: New Methods for Calculations of Some Limits

1 e \frac{1}{e} e 3 e^3 e 2 \frac{e}{2} e 2 e^2 e e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 14, 2020

L = lim n ( ( n + 1 ) 2 ( n + 1 ) ! n + 1 n 2 n ! n ) By Stirling’s formula: n ! 2 n π ( n e ) n = lim n ( ( n + 1 ) 2 ( 2 ( n + 1 ) π ) 1 2 ( n + 1 ) n + 1 e n 2 ( 2 n π ) 1 2 n n e ) = lim n ( ( n + 1 ) e ( 2 ( n + 1 ) π ) 1 2 ( n + 1 ) n e ( 2 n π ) 1 2 n ) Note that lim n ( 2 π ) 1 2 ( n + 1 ) = lim n 2 π 1 2 n = 1 = lim n ( e n ( ( n + 1 ) 1 2 ( n + 1 ) n 1 2 n ) + e ( n + 1 ) 1 2 ( n + 1 ) ) By theorem 1 (see note) = e lim n n ( n + 1 n ) d n 1 2 n d n + exp ( 1 lim n ln ( n + 1 ) 2 ( n + 1 ) ) An / case, L’H o ˆ pital’s rule applies. = e lim n n 1 1 2 n ( 1 2 n 2 + ln n 2 n 2 ) + exp ( 1 lim n 1 n + 1 2 ) Differentiate up and down w.r.t. n = 0 + e 1 0 = e \begin{aligned} L & = \lim_{n \to \infty} \left(\frac {(n+1)^2}{\sqrt[n+1]{(n+1)!}} - \frac {n^2}{\sqrt[n]{n!}} \right) & \small \blue{\text{By Stirling's formula: }n! \sim \sqrt{2n\pi}\left(\frac ne\right)^n} \\ & = \lim_{n \to \infty} \left(\frac {(n+1)^2}{(2(n+1)\pi)^{\frac 1{2(n+1)}} \cdot \frac {n+1}e} - \frac {n^2}{(2n\pi)^{\frac 1{2n}} \cdot \frac ne} \right) \\ & = \lim_{n \to \infty} \left(\frac {(n+1)e}{(2(n+1)\pi)^{\frac 1{2(n+1)}}} - \frac {ne}{(2n\pi)^{\frac 1{2n}}} \right) & \small \blue{\text{Note that }\lim_{n \to \infty} (2\pi)^{\frac 1{2(n+1)}} = \lim_{n \to \infty} {2\pi}^{\frac 1{2n}} = 1} \\ & = \lim_{n \to \infty} \left(e\blue{n\left((n+1)^{-\frac 1{2(n+1)}} - n^{-\frac 1{2n}} \right)} + e\red{(n+1)^{-\frac 1{2(n+1)}}}\right) & \small \blue{ \text{By theorem 1 (see note)}} \\ & = e \blue{\lim_{n \to \infty} n(n+1-n)\frac {d\ n^{-\frac 1{2n}}}{dn}} + \exp \left(1-\red{\lim_{n \to \infty} \frac {\ln (n+1)}{2(n+1)}} \right) & \small \red{\text{An }\infty/\infty \text{ case, L'Hôpital's rule applies.}} \\ & = e \blue{\lim_{n \to \infty} n^{1-\frac 1{2n}}\left(-\frac 1{2n^2}+\frac {\ln n}{2n^2}\right)} + \exp \left(1-\red{\lim_{n \to \infty} \frac {\frac 1{n+1}}2} \right) & \small \red{\text{Differentiate up and down w.r.t. }n} \\ & = \blue 0 + e^{1-\red 0} = \boxed e \end{aligned}


References:

  • Theorem 1: lim n n ( f ( a n + 1 f ( a n ) ) = lim n n ( a n + 1 a n ) f ( a n ) \displaystyle \lim_{n \to \infty} n(f(a_{n+1} - f(a_n)) = \lim_{n \to \infty} n(a_{n+1} - a_n) f'(a_n) . Source: New Methods For Calculations of Some Limits
  • L'Hôpital's rule

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...