Limits Again. Ekdum arginal

Calculus Level 3

lim x ( x ln 2 ) 2 x = ? \large \lim_{x\to\infty} (x \ln 2)^{2^{-x}} = \, ?

e^2 1 1/e 0 e^-2 e infinity Does not exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 20, 2018

Relevant wiki: L'Hopital's Rule - Basic

L = lim x ( x ln 2 ) 2 x = lim x x 1 2 x ( ln 2 ) 1 2 x Let u = 2 x ln u = x ln 2 = lim u ( ln u ln 2 ) 1 u ( ln 2 ) 1 u = lim u ( ln u ) 1 u = lim u exp ( ln ( ln u ) u ) where exp ( x ) = e x = lim u ( 1 + ln ( ln u ) u + 1 2 ! ( ln ( ln u ) u ) 2 + ) By Maclaurin series = 1 Since lim u ln ( ln u ) u = 0 (see note) \begin{aligned} L & = \lim_{x \to \infty} (x\ln 2)^{2^{-x}} \\ & = \lim_{x \to \infty} x^{\frac 1{2^x}} (\ln 2)^{\frac 1{2^x}} & \small \color{#3D99F6} \text{Let }u = 2^x \implies \ln u = x \ln 2 \\ & = \lim_{u \to \infty} \left(\frac {\ln u}{\ln 2}\right)^\frac 1u (\ln 2)^\frac 1u \\ & = \lim_{u \to \infty} (\ln u)^\frac 1u \\ & = \lim_{u \to \infty} \exp \left(\frac {\ln(\ln u)}u\right) & \small \color{#3D99F6} \text{where }\exp(x) = e^x \\ & = \lim_{u \to \infty} \left(1 + \frac {\ln(\ln u)}u + \frac 1{2!} \left(\frac {\ln(\ln u)}u\right)^2 + \cdots\right) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \boxed{1} & \small \color{#3D99F6} \text{Since }\lim_{u \to \infty} \frac {\ln(\ln u)}u = 0 \text{ (see note)} \end{aligned}


Note:

L u = lim u ln ( ln u ) u A / case, L’H o ˆ pital’s rule applies. = lim u 1 u ln u 1 Differentiate up and down w.r.t. u = 0 \begin{aligned} L_u & = \lim_{u \to \infty} \frac {\ln(\ln u)}u & \small \color{#3D99F6} \text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.} \\ & = \lim_{u \to \infty} \frac {\frac 1{u\ln u}}1 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }u \\ & = 0 \end{aligned}

Note that the substitution only works because when you will differentiate 2^x in both numerator and denominator 2^x(ln2) will cancel out . So it is the same as writing it as another variable t . Also from the third step I should write it as limit of t tends to infinity instead of x after the substitution. Apologies for that.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...