Limits again

Calculus Level 4

lim x 2 ( ( 1 + x ) 5 + ( 1 x ) 5 ) ( ( 1 + x ) 3 + ( 1 x ) 3 ) ( ( 1 + x ) 2 + ( 1 x ) 2 ) 3 = ? \lim _{ x\to \infty }{ \frac { 2\left( { \left( 1+x \right) }^{ 5 }+{ \left( 1-x \right) }^{ 5 } \right) \left( { \left( 1+x \right) }^{ 3 }+{ \left( 1-x \right) }^{ 3 } \right) }{ { \left( { \left( 1+x \right) }^{ 2 }+{ \left( 1-x \right) }^{ 2 } \right) }^{ 3 } } } =\, ?


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 15, 2016

L = lim x 2 ( ( 1 + x ) 5 + ( 1 x ) 5 ) ( ( 1 + x ) 3 + ( 1 x ) 3 ) ( ( 1 + x ) 2 + ( 1 x ) 2 ) 3 = lim x 8 ( 1 + 10 x 2 + 5 x 4 ) ( 1 + 3 x 2 ) 8 ( 1 + x 2 ) 3 = lim x 1 + 13 x 2 + 35 x 4 + 15 x 6 1 + 3 x 2 + 3 x 4 + x 6 Divide up and down by x 6 = lim x x 6 + 13 x 4 + 35 x 2 + 15 x 6 + 3 x 4 + 3 x 2 + 1 = 15 \begin{aligned} \mathfrak L & = \lim_{x \to \infty} \frac {2((1+x)^5+(1-x)^5) ((1+x)^3 +(1-x)^3 )} {((1+x)^2 +(1-x)^2 )^3} \\ & = \lim_{x \to \infty} \frac{8(1+10x^2+5x^4)(1+3x^2)} {8 (1+ x^2) ^3} \\ & = \lim_{x \to \infty} \frac {1 +13x^2 +35x^4+15x^6}{1+3x^2 +3x^4+x^6} \quad \quad \small \color{#3D99F6} {\text {Divide up and down by } x^6} \\ & = \lim_{x \to \infty} \frac {x^{-6} +13x^{-4} +35x^{-2} +15}{x^{-6}+3x^{-4}+3x^{-2}+1} \\ & = \boxed{15} \end{aligned}

Did the same way.

Niranjan Khanderia - 5 years, 1 month ago

Log in to reply

I did the same verbally

Gerardo Urbina
May 16, 2016

The limit will depend only on the highest powers of x, so we don't need to expand the whole thing: It's easy to see that the x 5 x^5 and the x 3 x^3 terms above will cancel each other, so the highest-degree terms lead to: L i m = 2 ( 10 x 4 ) ( 3 x 2 ) ( 2 x 2 ) 3 Lim = \frac{2(10x^4)(3x^2)}{(2x^2)^3} Which is 15.

only by divided by x^6 in up and down after u finshed ( ) there also quickly method like that

Patience Patience - 5 years ago
Ikkyu San
May 15, 2016

( 1 + x ) 2 + ( 1 x ) 2 = 1 + 2 x + x 2 + 1 2 x + x 2 = 2 x 2 + 2 \Rightarrow(1+x)^2+(1-x)^2=1+2x+x^2+1-2x+x^2=2x^2+2

( 1 + x ) 3 + ( 1 x ) 3 = ( 1 + x + 1 x ) [ ( 1 + x ) 2 ( 1 + x ) ( 1 x ) + ( 1 x ) 2 ] = 2 ( 2 x 2 + 2 1 + x 2 ) = 6 x 2 + 2 \Rightarrow(1+x)^3+(1-x)^3=(1+x+1-x)[(1+x)^2-(1+x)(1-x)+(1-x)^2]=2(2x^2+2-1+x^2)=6x^2+2

Since,

[ ( 1 + x ) 2 + ( 1 x ) 2 ] [ ( 1 + x ) 3 + ( 1 x ) 3 ] = ( 1 + x ) 5 + ( 1 x ) 5 + [ ( 1 + x ) ( 1 x ) ] 2 ( 1 + x + 1 x ) [(1+x)^2+(1-x)^2][(1+x)^3+(1-x)^3]=(1+x)^5+(1-x)^5+[(1+x)(1-x)]^2(1+x+1-x)

Thus,

( 1 + x ) 5 + ( 1 x ) 5 = ( 2 x 2 + 2 ) ( 6 x 2 + 2 ) 2 ( 1 x 2 ) 2 = 12 x 4 + 16 x 2 + 4 2 x 4 + 4 x 2 2 = 10 x 4 + 20 x 2 + 2 \Rightarrow(1+x)^5+(1-x)^5=(2x^2+2)(6x^2+2)-2(1-x^2)^2=12x^4+16x^2+4-2x^4+4x^2-2=10x^4+20x^2+2

From Limit,

lim x 2 [ ( 1 + x ) 5 + ( 1 x ) 5 ] [ ( 1 + x ) 3 + ( 1 x ) 3 ] [ ( 1 + x ) 2 + ( 1 x ) 2 ] 3 = lim x 2 ( 10 x 4 + 20 x 2 + 2 ) ( 6 x 2 + 2 ) ( 2 x 2 + 2 ) 3 = lim x 8 ( 5 x 4 + 10 x 2 + 1 ) ( 3 x 2 + 1 ) 8 ( x 2 + 1 ) 3 = lim x 15 x 6 + 35 x 4 + 13 x 2 + 1 x 6 + 3 x 4 + 3 x 2 + 1 = lim x 15 + 35 x 2 + 13 x 4 + 1 x 6 1 + 3 x 2 + 3 x 4 + 1 x 6 = 15 \begin{aligned}\displaystyle\lim_{x\to\infty}\dfrac{2[(1+x)^5+(1-x)^5][(1+x)^3+(1-x)^3]}{[(1+x)^2+(1-x)^2]^3}=&\displaystyle\lim_{x\to\infty}\dfrac{2(10x^4+20x^2+2)(6x^2+2)}{(2x^2+2)^3}\\=&\displaystyle\lim_{x\to\infty}\dfrac{8(5x^4+10x^2+1)(3x^2+1)}{8(x^2+1)^3}\\=&\displaystyle\lim_{x\to\infty}\dfrac{15x^6+35x^4+13x^2+1}{x^6+3x^4+3x^2+1}\\=&\displaystyle\lim_{x\to\infty}\dfrac{15+\dfrac{35}{x^2}+\dfrac{13}{x^4}+\dfrac1{x^6}}{1+\dfrac3{x^2}+\dfrac3{x^4}+\dfrac1{x^6}}\\=&\boxed{15}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...