Limits and Functional equations!

Calculus Level 4

lim x π 4 2 sec 2 x f ( t ) d t x 2 π 2 16 = k π f ( a ) {\large\lim _{ x\rightarrow \frac \pi 4}} \ {\frac { \displaystyle \int _{ 2 }^{ \sec ^{ 2 }{ x } }{ f\left( t \right) \ dt } }{ { x }^{ 2 }-\dfrac { { \pi }^{ 2 } }{ 16 } } } =\frac { k }{ \pi } f\left( a \right)

Given that f ( x ) f(x) is continuous on real numbers, if the above expression is true for natural numbers a a and k k , find k a k^a .


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Zuhair
May 24, 2017

Relevant wiki: Differentiation Under the Integral Sign

To Find: \color{#D61F06} \text{To Find:} lim x π 4 ( 2 sec 2 x f ( t ) d t x 2 π 2 16 ) = ? \color{#20A900} \displaystyle{\lim _{ x\rightarrow \frac { \pi }{ 4 }}{ \left( \frac { \displaystyle \int _{ 2 }^{ \sec ^{ 2 }{ x } }{ f\left( t \right) dt } }{ { x }^{ 2 }-\dfrac { { \pi }^{ 2 } }{ 16 } } \right) } =?}

Now We can Apply L'Hospitals Rule and Leibnitz Integral Rule

We Have

lim x π 4 ( 2 sec 2 x f ( t ) d t x 2 π 2 16 ) \implies \displaystyle{\lim _{ x\rightarrow \frac { \pi }{ 4 } }{ \left( \frac { \displaystyle \int _{ 2 }^{ \sec ^{ 2 }{ x } }{ f\left( t \right) dt } }{ { x }^{ 2 }-\dfrac { { \pi }^{ 2 } }{ 16 } } \right) }}

lim x π 4 ( 2 × sec 2 x × tan x × f ( s e c 2 x ) 2 x ) \implies \displaystyle{\lim_{x\rightarrow \frac{\pi}{4}}{\left(\frac{2 \times \sec^2x \times \tan x \times f(sec^2x)}{2x}\right)}} Differentiated and then used Leibnitz Integral Rule \small{\color{#3D99F6} \text{Differentiated and then used Leibnitz Integral Rule}}

Putting the value of the limits,

tan π 4 × sec 2 π 4 × sec 2 x × f ( sec 2 π 4 ) 2 × π 4 \implies \large{ \frac{ \tan \dfrac{\pi}{4} \times \sec^2 \dfrac{\pi}{4} \times \sec^2 x\times f(\sec^2 \dfrac{\pi}{4})}{2 \times \dfrac{\pi}{4}}}

1 × 2 × 2 × f ( 2 ) π 2 \implies \large{ \frac{ 1 \times 2 \times 2 \times f(2)}{\dfrac{\pi}{2}}}

8 f ( 2 ) π \implies \large{\frac{8f(2)}{\pi}}

so k a = 8 2 64 k^a = 8^2 \implies \boxed{64}

@Priyanshu Mishra how is my solution?

Md Zuhair - 4 years ago

Log in to reply

its good. But literary ITS L'HOPITAL RULE not "hospital"

Priyanshu Mishra - 3 years, 11 months ago

Log in to reply

Okay I see...

Md Zuhair - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...