Limits and functions

Calculus Level 3

Given,

y = 1 x 2 + 1 \large y=\frac{1}{x^{2}+1}

Find y y^{\prime} using the definition of the derivative.

x = tan α x=\tan \alpha and y = cos 2 α y=\cos^2\alpha so that d y d x = d y d α d x d α \dfrac{dy}{dx}=\dfrac{\frac{dy}{d\alpha}}{\frac{dx}{d\alpha}} .

If y y^{\prime} can be expressed as α x x β + 2 x γ + δ \large\frac {\alpha x }{ x^{ \beta }+2x^{ \gamma }+\delta } .

What is the value of α + β + γ + δ \alpha+\beta+\gamma+\delta ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Armain Labeeb
Jul 10, 2016

L e t f ( x ) = 1 x 2 + 1 T h e n y = f ( x ) = lim h 0 ( f ( x + h ) f ( x ) h ) = lim h 0 ( 1 ( x + h ) 2 + 1 1 x 2 + 1 h ) = lim h 0 ( ( x 2 + 1 ) ( ( x + h ) 2 + 1 ) ( ( x + h ) 2 + 1 ) ( x 2 + 1 ) 1 h ) = lim h 0 ( x 2 + 1 x 2 2 x h h 2 1 ( ( x + h ) 2 + 1 ) ( x 2 + 1 ) h ) = lim h 0 ( h ( 2 x h ) h ( ( x + h ) 2 + 1 ) ( x 2 + 1 ) ) = lim h 0 ( ( 2 x h ) ( ( x + h ) 2 + 1 ) ( x 2 + 1 ) ) = lim h 0 ( ( 2 x 0 ) ( ( x + 0 ) 2 + 1 ) ( x 2 + 1 ) ) = lim h 0 ( 2 x ( ( x + h ) 2 + 1 ) ( x 2 + 1 ) ) = 2 x ( x 2 + 1 ) 2 α x x β + 2 x γ + δ = 2 x x 4 + 2 x 2 + 1 α + β + γ + δ = 2 + 4 + 2 + 1 = 5 \begin{aligned} Let\quad f\left( x \right) & =\frac { 1 }{ { x }^{ 2 }+1 } \\ Then\quad { y }^{ ' }=f^{ ' }\left( x \right) & =\lim _{ h\to 0 }{ \left( \frac { f\left( x+h \right) -f\left( x \right) }{ h } \right) } \\ & =\lim _{ h\to 0 }{ \left( \frac { \frac { 1 }{ { (x+h) }^{ 2 }+1 } -\frac { 1 }{ { x }^{ 2 }+1 } }{ h } \right) } \\ & =\lim _{ h\to 0 }{ \left( \frac { \left( { x }^{ 2 }+1 \right) -({ (x+h) }^{ 2 }+1) }{ { ((x+h) }^{ 2 }+1)\, \, \cdot \, \, { (x }^{ 2 }+1) } \cdot \frac { 1 }{ h } \right) } \\ & =\lim _{ h\to 0 }{ \left( \frac { { { x }^{ 2 } }+{ 1 }-{ { x }^{ 2 } }-2xh-{ h }^{ 2 }-{ 1 } }{ { ((x+h) }^{ 2 }+1)\, \, \cdot \, \, { (x }^{ 2 }+1)\, \cdot \, h } \right) } \\ & =\lim _{ h\to 0 }{ \left( \frac { { h }(-2x-h) }{ { { h }((x+h) }^{ 2 }+1){ (x }^{ 2 }+1) } \right) } \\ & =\lim _{ h\to 0 }{ \left( \frac { (-2x-h) }{ { ((x+h) }^{ 2 }+1){ (x }^{ 2 }+1) } \right) } \\ & =\lim _{ h\to 0 }{ \left( \frac { (-2x-0) }{ { ((x+0) }^{ 2 }+1){ (x }^{ 2 }+1) } \right) } \\ & =\lim _{ h\to 0 }{ \left( \frac { -2x }{ { ((x+h) }^{ 2 }+1){ (x }^{ 2 }+1) } \right) } \\ & =\frac { -2x }{ { ({ x }^{ 2 }+1) }^{ 2 } } \\ \therefore \frac { \alpha x }{ x^{ \beta }+2x^{ \gamma }+\delta } & =\frac { -2x }{ { { { x }^{ 4 }+2x }^{ 2 }+1 } } \\ \Longrightarrow \alpha +\beta +\gamma +\delta & =-2+4+2+1 \\ & =5 \end{aligned}

Just for the the sake of variety put x = tan α x=\tan \alpha so that y = cos 2 α y=\cos^2\alpha . Then d y d x = d y d α d x d α \dfrac{dy}{dx}=\dfrac{\frac{dy}{d\alpha}}{\frac{dx}{d\alpha}} .

Rishabh Jain - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...