Limits and Integral of transcendental function

Calculus Level pending

This is graph of function f ( x ) = e 2 x { f }_{ (x) }={ e }^{ 2x } and its inverse function y = g ( x ) y={ g }_{ (x) } (where e is base of natural logarithm)

(1) Solve lim x 0 f ( 2 x ) 1 g ( 2 x + 1 ) \lim _{ x\rightarrow 0 }{ \frac { { f }_{ (2x) }-1 }{ { g }_{ (2x+1) } } }

(2) And, consider a line that passes through a point ( e 4 , g ( e 4 ) ) ({ e }^{ 4 },{ g }_{ ({ e }^{ 4 }) }) and is parallel with x axis. Let a point where this line intersects with curve y = f ( x ) y={ f }_{ (x) } be ( a , f ( a ) ) (a,{ f }_{ (a) }) . Calculate area that is surrounded by x axis, y axis, curve y = f ( x ) y={ f }_{ (x) } , and line x = a x=a .

Let the answer of question (1) be X and the answer of question (2) be Y. Evaluate X Y \boxed{XY} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Min-woo Lee
Mar 29, 2014
  • (1) The inverse function of f ( x ) = e 2 x f\left( x \right) ={ e }^{ 2x } is x = e 2 y x={ e }^{ 2y } .

Apply natrual log on both side, ln x = ln e 2 x y = 1 2 ln x \ln { x } =\ln { { e }^{ 2x } } \quad \therefore \quad y=\frac { 1 }{ 2 } \ln { x }

Therefore, the inverse function of f ( x ) f\left( x \right) , the g ( x ) g\left( x \right) is

g ( x ) = 1 2 ln x g\left( x \right) =\frac { 1 }{ 2 } \ln { x }

lim x 0 f ( 2 x ) 1 g ( 2 x + 1 ) = lim x 0 e 4 x 1 1 2 ln ( 2 x + 1 ) \therefore \lim _{ x\rightarrow 0 }{ \frac { f\left( 2x \right) -1 }{ g\left( 2x+1 \right) } } =\lim _{ x\rightarrow 0 }{ \frac { { e }^{ 4x }-1 }{ \frac { 1 }{ 2 } \ln { (2x+1) } } }

= 2 lim x 0 { e 4 x 1 4 x × 2 x ln ( 2 x + 1 ) × 4 2 } =2\lim _{ x\rightarrow 0 }{ \left\{ \frac { { e }^{ 4x }-1 }{ 4x } \times \frac { 2x }{ \ln { (2x+1) } } \times \frac { 4 }{ 2 } \right\} }

= 4 lim x 0 e 4 x 1 4 x × lim x 0 1 ln ( 2 x + 1 ) 1 2 x =4\lim _{ x\rightarrow 0 }{ \frac { { e }^{ 4x }-1 }{ 4x } } \times \lim _{ x\rightarrow 0 }{ \frac { 1 }{ { \ln { (2x+1) } }^{ \frac { 1 }{ 2x } } } }

= 4 × 1 × 1 =4\times 1\times 1

4 = X \boxed{4 = X}


  • (2) Let g ( e 4 ) = k g\left( { e }^{ 4 } \right) =k

f ( k ) = e 2 k = 4 f\left( k \right) ={ e }^{ 2k }=4

k = 2 \therefore k=2

Since f ( a ) = 2 f\left( a \right) =2

e 2 a = 2 { e }^{ 2a }=2

a = 1 2 ln 2 \therefore a=\frac { 1 }{ 2 } \ln { 2 }

Therefore the area we want to evaluate is

0 1 2 ln 2 e 2 x d x = [ 1 2 e 2 x ] 0 1 2 ln 2 \int _{ 0 }^{ \frac { 1 }{ 2 } \ln { 2 } }{ { e }^{ 2x } } dx={ \left[ \frac { 1 }{ 2 } { e }^{ 2x } \right] }_{ 0 }^{ \frac { 1 }{ 2 } \ln { 2 } }

= 1 2 e ln 2 1 2 =\frac { 1 }{ 2 } { e }^{ \ln { 2 } }-\frac { 1 }{ 2 }

= 1 2 × 2 1 2 =\frac { 1 }{ 2 } \times 2-\frac { 1 }{ 2 }

1 2 = Y \boxed{\frac { 1 }{ 2 } = Y}


  • (3) X Y = 4 1 2 = 2 \boxed{XY=4\cdot \frac { 1 }{ 2 }=2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...