Limits and Integrals!

Calculus Level 4

lim n ( 2 n n 2 + 1 + 2 n n 2 + 4 + 2 n n 2 + 9 + + 2 n n 2 + n 2 ) \displaystyle \lim_{n\rightarrow\infty}\left(\dfrac{2n}{n^{2}+1}+\dfrac{2n}{n^{2}+4}+\dfrac{2n}{n^{2}+9}+\cdots+\dfrac{2n}{n^{2}+n^{2}}\right)

Let A A denote the value of the limit above. And if the value of, I = 0 A x sin ( x ) + cos ( x ) d x \displaystyle I=\int_{0}^{A}\dfrac{x}{\sin(x)+\cos(x)}dx

is of the form, π a b ( ln ( c + d ) ln ( e f ) ) \displaystyle \dfrac{\pi}{a\sqrt{b}}\left(\ln(\sqrt{c}+d)-\ln(\sqrt{e}-f)\right)

Find the value of a + b + c + d + e + f a+b+c+d+e+f .

Details and Assumptions :

1) a , b , c , d , e , f a,b,c,d,e,f are integers . They need not to be distinct

2) b , c , e b,c,e are not having any factor which is a perfect square.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
May 3, 2015

using reimann sum form

A = 2 0 1 d x 1 + x 2 A=2 \displaystyle \int^{1}_{0} \frac{dx}{1+x^{2}}

A = π 2 A=\frac{\pi}{2}

I = 0 π 2 x s i n x + c o s x d x I=\displaystyle \int^{\frac{\pi}{2}}_{0} \frac{x}{sinx+cosx}dx

using property of definite integral

2 I = π 2 0 π 2 1 s i n x + c o s x d x 2I=\frac{\pi}{2} \displaystyle \int^{\frac{\pi}{2}}_{0} \frac{1}{sinx+cosx}dx

s i n x = t a n ( x 2 ) 1 + t a n 2 ( x 2 ) \large{sinx=\frac{tan(\frac{x}{2})}{1+tan^{2}(\frac{x}{2})}}

c o s x = 1 t a n 2 ( x 2 ) 1 + t a n 2 ( x 2 ) \large{cosx=\frac{1-tan^{2}(\frac{x}{2})}{1+tan^{2}(\frac{x}{2})}}

2 I = π 2 0 π 2 s e c 2 ( x 2 ) 2 t a n ( x 2 ) + 1 t a n 2 ( x 2 ) d x 2I=\frac{\pi}{2} \displaystyle \int^{\frac{\pi}{2}}_{0} \frac{sec^{2}(\frac{x}{2})}{2tan(\frac{x}{2})+1-tan^{2}(\frac{x}{2})}dx

put t a n ( x 2 ) = t tan(\frac{x}{2})=t

2 I = π 2 0 1 2 2 t + 1 t 2 d t 2I=\frac{\pi}{2} \displaystyle \int^{1}_{0} \frac{2}{2t+1-t^{2}}dt

2 I = π 0 1 1 2 ( t 1 ) 2 d t 2I=\pi \displaystyle \int^{1}_{0} \frac{1}{2-(t-1)^{2}}dt

I = π 4 2 ( l n ( 2 + 1 ) l n ( 2 1 ) ) I=\frac{\pi}{4\sqrt{2}}(ln(\sqrt{2}+1)-ln(\sqrt{2}-1))

a = 4 , b = 2 , c = 2 , d = 1 , e = 2 , f = 1 a=4,~b=2,~c=2,~d=1,~e=2,~f=1

a + b + c + d + e + f = 12 \large{\boxed{a+b+c+d+e+f=12}}

nice problem @Samarpit Swain

Tanishq Varshney - 6 years, 1 month ago

Log in to reply

Thanks:D, and nicely done! @Tanishq Varshney

Samarpit Swain - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...