Limits and radicals?

Calculus Level 3

lim n n 3 2 n 2 + 1 + n 4 + 1 3 n 6 + 6 n 5 + 2 4 n 7 + 3 n 3 + 1 5 = k \lim_{n \rightarrow \infty} \frac { \sqrt{n^{3}-2n^{2}+1} + \sqrt[3]{n^{4}+1} }{ \sqrt[4]{n^{6}+6n^{5}+2} - \sqrt[5]{n^{7}+3n^{3}+1} } = k

If k k above exist, evaluate k 2016 k^{2016} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

k = lim n ( n 3 2 n 2 + 1 ) 1 2 + ( n 4 + 1 ) 1 3 ( n 6 + 6 n 5 + 2 ) 1 4 ( n 7 + 3 n 3 + 1 ) 1 5 = lim n n 3 2 ( 1 2 n 1 + n 3 ) 1 2 + n 4 3 ( 1 + n 4 ) 1 3 n 3 2 ( 1 + 6 n 1 + 2 n 6 ) 1 4 n 7 5 ( 1 + 3 n 4 + n 7 ) 1 5 Divide up and down by n 3 2 = lim n ( 1 2 n 1 + n 3 ) 1 2 + n 1 6 ( 1 + n 4 ) 1 3 ( 1 + 6 n 1 + 2 n 6 ) 1 4 n 1 10 ( 1 + 3 n 4 + n 7 ) 1 5 = ( 1 2 n 1 0 + n 3 0 ) 1 2 + n 1 6 0 ( 1 + n 4 0 ) 1 3 ( 1 + 6 n 1 0 + 2 n 6 0 ) 1 4 n 1 10 0 ( 1 + 3 n 4 0 + n 7 0 ) 1 5 = 1 \begin{aligned} k & = \lim_{n \to \infty} \frac {(n^3-2n^2+1)^\frac 12 + (n^4+1)^\frac 13}{(n^6+6n^5+2)^\frac 14-(n^7+3n^3+1)^\frac 15} \\ & = \lim_{n \to \infty} \frac {n^\frac 32(1-2n^{-1}+n^{-3})^\frac 12 + n^\frac 43(1+n^{-4})^\frac 13}{n^\frac 32(1+6n^{-1}+2n^{-6})^\frac 14 - n^\frac 75(1+3n^{-4}+n^{-7})^\frac 15} & \small \color{#3D99F6}{\text{Divide up and down by }n^\frac 32} \\ & = \lim_{n \to \infty} \frac {(1-2n^{-1}+n^{-3})^\frac 12 + n^{-\frac 16}(1+n^{-4})^\frac 13}{(1+6n^{-1}+2n^{-6})^\frac 14 - n^{-\frac 1{10}}(1+3n^{-4}+n^{-7})^\frac 15} \\ & = \frac {(1-2\cancel{n^{-1}}^0+\cancel{n^{-3}}^0)^\frac 12 + \cancel{n^{-\frac 16}}^0(1+\cancel{n^{-4}}^0)^\frac 13}{(1+\cancel{6n^{-1}}^0+2\cancel{n^{-6}}^0)^\frac 14 - \cancel{n^{-\frac 1{10}}}^0(1+3\cancel{n^{-4}}^0+\cancel{n^{-7}}^0)^\frac 15} \\ & = \boxed{1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...