Limits are meant to be played with!

Calculus Level 3

lim x 0 e tan x e sin x tan x sin x = ? \large \lim_{x \rightarrow 0} \frac{e^{\tan x}-e^{\sin x}}{\tan x- \sin x} = ?

Find the limit above to 2 decimal places. If you think that the limit doesn't exist, enter 987.78 as answer.


The answer is 1.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

lim x 0 e tan x e sin x tan x sin x \large \displaystyle \lim_{x \rightarrow 0} \frac{e^{\tan x}-e^{\sin x}}{\tan x- \sin x}

= lim x 0 e tan x 1 e sin x + 1 tan x sin x = \large \displaystyle \lim_{x \rightarrow 0} \frac{e^{\tan x}-1-e^{\sin x}+1}{\tan x- \sin x}

= lim x 0 e tan x 1 ( e sin x 1 ) tan x sin x = \large \displaystyle \lim_{x \rightarrow 0} \frac{e^{\tan x}-1-(e^{\sin x}-1)}{\tan x- \sin x}

= lim x 0 tan x e tan x 1 tan x sin x e sin x 1 sin x tan x sin x = \large \displaystyle \lim_{x \rightarrow 0} \frac{\tan { x } \frac { { e }^{ \tan { x } }-1 }{ \tan { x } } -\sin { x } \frac { { e }^{ \sin { x } }-1 }{ \sin { x } } }{\tan x- \sin x}

= lim x 0 tan x . lim tan x 0 e tan x 1 tan x lim x 0 sin x . lim sin x 0 e sin x 1 sin x lim x 0 ( tan x sin x ) = \large \displaystyle \frac{\lim_{x \rightarrow 0} \tan { x } .\lim_{\tan x \rightarrow 0}\frac { { e }^{ \tan { x } }-1 }{ \tan { x } } -\lim_{x \rightarrow 0} \sin { x }. \lim_{\sin x \rightarrow 0}\frac { { e }^{ \sin { x } }-1 }{ \sin { x } } }{\lim_{x \rightarrow 0}(\tan x- \sin x)}

= lim x 0 tan x . 1 lim x 0 sin x . 1 lim x 0 ( tan x sin x ) = \large \displaystyle \frac{\lim_{x \rightarrow 0} \tan x.1 - \lim_{x \rightarrow 0} \sin x.1}{\lim_{x \rightarrow 0}(\tan x- \sin x)}

= lim x 0 ( tan x sin x ) lim x 0 ( tan x sin x ) = \large \displaystyle \frac{\lim_{x \rightarrow 0}(\tan x - \sin x)}{\lim_{x \rightarrow 0}(\tan x - \sin x)}

= lim x 0 tan x sin x tan x sin x = \large \displaystyle \lim_{x \rightarrow 0} \frac{\tan x - \sin x}{\tan x - \sin x}

= lim x 0 1 = 1 =\large \displaystyle \lim_{x \rightarrow 0} 1 = \boxed{1}

Can we Just take e sin x e^{\sin{x}} common from the numerator ??

lim x 0 e sin x ( e tan x sin x 1 tan x sin x ) lim x 0 e sin x 1 = 1 \displaystyle\lim_{x \to 0} e^{\sin{x}} \left(\dfrac{e^{\tan{x}-\sin{x}}-1}{\tan{x}-\sin{x}}\right) \\ \displaystyle\lim_{x \to 0} e^{\sin{x}} \cdot 1 = \boxed{ 1 }

Sabhrant Sachan - 4 years, 11 months ago

Log in to reply

Nice one step solution, man. Hats off to you. I was desperate to solve this question anyway, that's why I had to go through so many steps.

Arkajyoti Banerjee - 4 years, 11 months ago

Could have used expansions.

Abhi Kumbale - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...