x → 0 lim tan x − sin x e tan x − e sin x = ?
Find the limit above to 2 decimal places. If you think that the limit doesn't exist, enter 987.78 as answer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Can we Just take e sin x common from the numerator ??
x → 0 lim e sin x ( tan x − sin x e tan x − sin x − 1 ) x → 0 lim e sin x ⋅ 1 = 1
Log in to reply
Nice one step solution, man. Hats off to you. I was desperate to solve this question anyway, that's why I had to go through so many steps.
Could have used expansions.
Problem Loading...
Note Loading...
Set Loading...
x → 0 lim tan x − sin x e tan x − e sin x
= x → 0 lim tan x − sin x e tan x − 1 − e sin x + 1
= x → 0 lim tan x − sin x e tan x − 1 − ( e sin x − 1 )
= x → 0 lim tan x − sin x tan x tan x e tan x − 1 − sin x sin x e sin x − 1
= lim x → 0 ( tan x − sin x ) lim x → 0 tan x . lim tan x → 0 tan x e tan x − 1 − lim x → 0 sin x . lim sin x → 0 sin x e sin x − 1
= lim x → 0 ( tan x − sin x ) lim x → 0 tan x . 1 − lim x → 0 sin x . 1
= lim x → 0 ( tan x − sin x ) lim x → 0 ( tan x − sin x )
= x → 0 lim tan x − sin x tan x − sin x
= x → 0 lim 1 = 1