Limits at its best

Calculus Level 5

lim x ( cos ( 2 ( ln ( x 1 ) ln ( x + 1 ) ) ) ) ( x + 1 ) 2 = ? \displaystyle \lim_{x \to \infty} \Bigg ( \ \cos \bigg ( 2 ( \ln(x-1) - \ln(x+1) ) \bigg ) \ \Bigg)^{(x+1)^2 } = \ ?


The answer is 0.000335.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepanshu Gupta
Mar 15, 2015

too Easy Problem ! This is form of 1 { 1 }^{ \infty } hence I repetedly use formula for this form , I don't give proof since It is useless. L = lim x ( f ( x ) ) g ( x ) = e lim x ( f ( x ) 1 ) g ( x ) \displaystyle{L=\lim _{ x\rightarrow \infty }{ { \left( f\left( x \right) \right) }^{ { g\left( x \right) } } } ={ e }^{ \lim _{ x\rightarrow \infty }{ (f\left( x \right) -1)g\left( x \right) } }}

L = lim x ( cos ( 2 ln ( x 1 x + 1 ) ) ) ( x + 1 ) 2 L = e lim x ( cos ( 2 ln ( x 1 x + 1 ) ) 1 ) ( x + 1 ) 2 L = e lim x ( 2 sin 2 ln ( x 1 x + 1 ) ) ( x + 1 ) 2 L = e ( 2 ) lim x ( ln ( x 1 x + 1 ) ) 2 ( x + 1 ) 2 L = e ( 2 ) lim x ( ( x + 1 ) ln ( x 1 x + 1 ) ) 2 = e 2 L 1 2 . . . ( 1 ) L 1 = ln ( lim x ( x 1 x + 1 ) x + 1 ) ( 1 f o r m ) L 1 = ln ( e 2 ) = 2 . . . ( 2 ) L = e 8 \displaystyle{\\ L=\lim _{ x\rightarrow \infty }{ { \left( \cos { \left( 2\ln { \left( \cfrac { x-1 }{ x+1 } \right) } \right) } \right) }^{ { (x+1) }^{ 2 } } } \\ L={ e }^{ \lim _{ x\rightarrow \infty }{ { \left( \cos { \left( 2\ln { \left( \cfrac { x-1 }{ x+1 } \right) } \right) } -1 \right) { (x+1) }^{ 2 } } } }\\ L={ e }^{ \lim _{ x\rightarrow \infty }{ { \left( -2\sin ^{ 2 }{ \ln { \left( \cfrac { x-1 }{ x+1 } \right) } } \right) { (x+1) }^{ 2 } } } }\\ L={ e }^{ \left( -2 \right) \lim _{ x\rightarrow \infty }{ { ({ \ln { \left( \cfrac { x-1 }{ x+1 } \right) } ) }^{ 2 }{ (x+1) }^{ 2 } } } }\\ L={ e }^{ \left( -2 \right) \lim _{ x\rightarrow \infty }{ { ((x+1){ \ln { \left( \cfrac { x-1 }{ x+1 } \right) } })^{ 2 } } } }={ e }^{ -2{ { L }_{ 1 } }^{ 2 } }\quad .\quad .\quad .(1)\\ { L }_{ 1 }=\ln { \left( \lim _{ x\rightarrow \infty }{ { (\cfrac { x-1 }{ x+1 } })^{ x+1 } } \right) } \quad ({ 1 }^{ \infty }\quad form)\\ { L }_{ 1 }=\ln { { (e }^{ -2 }) } =-2\quad .\quad .\quad .(2)\\ \boxed { L={ e }^{ -8 } } }

can please u explain that sin approximation step.....

pranav patil - 5 years, 12 months ago

Nice solution

pawan dogra - 5 years, 10 months ago
Priyesh Pandey
Mar 29, 2015

ans is e^(-8)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...