n → − 1 lim e ( n + 1 ) / 4 + ln ( 4 n + 5 ) + n 3 n + n 6 + ln ( n + 2 )
If the limit above is in the form of − B A , where A and B are coprime positive integers, find A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the limit be λ . We note that the nominator and denominator functions both tend to 0 as x → − 1 so we can use the L'Hôpital's rule.
λ = x → − 1 lim e 4 x + 1 + ln ( 4 x + 5 ) + x 3 x + x 6 + ln ( x + 2 ) = x → − 1 lim 4 e 4 x + 1 + 4 x + 5 4 + 3 x 2 1 + 6 x 5 + x + 2 1 = 4 1 + 4 + 3 1 − 6 + 1 = − 2 9 1 6
⇒ A + B = 1 6 + 2 9 = 4 5
Problem Loading...
Note Loading...
Set Loading...
Let L denote the given limit. Doing some manupulations we get:- L = n → − 1 lim ( 4 n + 1 e 4 n + 1 − 1 ) ( 4 n + 1 ) + 1 + 4 n + 4 ln ( 1 + 4 n + 4 ) ( 4 n + 4 ) + n 3 n + n 6 + ( n + 1 ) ( n + 1 ) ln ( 1 + n + 1 ) Using:- x → 0 lim x e x − 1 = 1 , x → 0 lim x ln ( 1 + x ) = 1 ⟹ L = n → − 1 lim 4 ( 4 n 3 + 1 7 n + 2 1 n 6 + 2 n + 1 ) ⟹ L = n → − 1 lim 4 ( ( n + 1 ) ( 4 n 2 − 4 n + 2 1 ) ( n + 1 ) ( n 5 − n 4 + n 3 − n 2 + n + 1 ) L = − 2 9 1 6 ∴ 2 9 + 1 6 = 4 5