Limits at its maximum

Calculus Level 3

lim n 1 n + n 6 + ln ( n + 2 ) e ( n + 1 ) / 4 + ln ( 4 n + 5 ) + n 3 \large \lim_{n\to -1} \dfrac{ n+n^6 + \ln(n+2)}{e^{(n+1)/4} + \ln(4n+5) + n^3}

If the limit above is in the form of A B -\dfrac AB , where A A and B B are coprime positive integers, find A + B A+B .


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 11, 2016

Let L \mathfrak{L} denote the given limit. Doing some manupulations we get:- L = lim n 1 n + n 6 + ( n + 1 ) ln ( 1 + n + 1 ) ( n + 1 ) ( e n + 1 4 1 n + 1 4 ) ( n + 1 4 ) + 1 + ln ( 1 + 4 n + 4 ) 4 n + 4 ( 4 n + 4 ) + n 3 \mathfrak{L}=\displaystyle\lim _{ n\rightarrow -1 }\dfrac{n+n^6+(n+1)\color{#69047E}{\frac{\ln(1+n+1)}{(n+1)}}}{\color{#D61F06}{\left(\frac{e^{\frac{n+1}{4}}-1}{\frac{n+1}{4}}\right)}\left(\frac{n+1}{4}\right)+1+\color{#3D99F6}{\frac{\ln(1+4n+4)}{4n+4}}(4n+4) +n^3 } Using:- lim x 0 e x 1 x = 1 , lim x 0 ln ( 1 + x ) x = 1 \boxed{\text{Using:-}\\\color{#0C6AC7}{ \displaystyle\lim_{x\to 0}\dfrac{e^x-1}{x}=1,\displaystyle\lim_{x\to 0}\dfrac{\ln(1+x)}{x}=1}} L = lim n 1 4 ( n 6 + 2 n + 1 4 n 3 + 17 n + 21 ) \implies \mathfrak L=\displaystyle\lim_{n\to -1} ~4\left(\dfrac{n^6+2n+1}{4n^3+17n+21}\right) L = lim n 1 4 ( ( n + 1 ) ( n 5 n 4 + n 3 n 2 + n + 1 ( n + 1 ) ( 4 n 2 4 n + 21 ) ) \implies \mathfrak L=\displaystyle\lim_{n\to -1} 4\left(\dfrac{\xcancel{(n+1)}(n^5-n^4+n^3-n^2+n+1}{\xcancel{(n+1)}(4n^2-4n+21)}\right) L = 16 29 \mathfrak L=-\dfrac{16}{29} 29 + 16 = 45 \therefore\Huge29+16=\color{#456461}{\boxed{\color{#D61F06}{\boxed{\color{#007fff}{45}}}}}

Chew-Seong Cheong
Mar 11, 2016

Let the limit be λ \lambda . We note that the nominator and denominator functions both tend to 0 0 as x 1 x \to -1 so we can use the L'Hôpital's rule.

λ = lim x 1 x + x 6 + ln ( x + 2 ) e x + 1 4 + ln ( 4 x + 5 ) + x 3 = lim x 1 1 + 6 x 5 + 1 x + 2 e x + 1 4 4 + 4 4 x + 5 + 3 x 2 = 1 6 + 1 1 4 + 4 + 3 = 16 29 \begin{aligned} \lambda & = \lim_{x \to -1} \frac{x+x^6+\ln(x+2)}{e^{\frac{x+1}{4}}+\ln(4x+5)+x^3} \\ & = \lim_{x \to -1} \frac{1+6x^5+\frac{1}{x+2}}{\frac{e^{\frac{x+1}{4}}}{4}+\frac{4}{4x+5}+3x^2} \\ & = \frac{1-6+1}{\frac{1}{4}+4+3} = - \frac{16}{29} \end{aligned}

A + B = 16 + 29 = 45 \Rightarrow A+B = 16+29 = \boxed{45}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...