Limits & derivative

Calculus Level 1

Find the derivative of function f ( x ) = 2 x 2 + 3 x + 1 f(x) = -2x^2 + 3x + 1 using the first principle.

4 x 3 4x-3 4 x + 3 -4x+3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

James Watson
Jan 13, 2021

f ( x ) lim h 0 f ( x + h ) f ( x ) h f'(x) \equiv \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} Here, f ( x ) = 2 x 2 + 3 x + 1 f(x) = -2x^2 + 3x + 1 so f ( x ) = lim h 0 2 ( x + h ) 2 + 3 ( x + h ) + 1 ( 2 x 2 + 3 x + 1 ) h = lim h 0 2 x 2 4 x h 2 h 2 + 3 x + 3 h + 1 + 2 x 2 3 x 1 h = lim h 0 4 x h 2 h 2 + 3 h h = lim h 0 4 x 2 h + 3 = 4 x + 3 \begin{aligned} f'(x) = \lim_{h\to 0} \frac{-2(x+h)^2 + 3(x+h) + 1 - (-2x^2 + 3x + 1)}{h} &= \lim_{h\to 0} \frac{-2x^2 - 4xh - 2h^2 + 3x+3h + 1 + 2x^2 - 3x - 1}{h} \\ &= \lim_{h\to 0} \frac{- 4xh - 2h^2 +3h}{h} \\ &= \lim_{h\to 0} -4x - 2h + 3 = \boxed{-4x+3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...