Limits going wild

Calculus Level 3

lim x 0 ( 1 x 2 1 sin 2 ( x ) ) \lim_{x\rightarrow0}\left(\frac{1}{x^{2}}-\frac{1}{\sin^{2}(x)} \right)

If the value of the limit above is of the form a b -\frac{a}{b} for coprime positive integers a a and b b , then input the answer as a + b a+b .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Maggie Miller
Jul 21, 2015

lim x 0 ( 1 x 2 1 sin 2 ( x ) ) = lim x 0 sin 2 ( x ) x 2 x 2 sin 2 ( x ) \displaystyle\lim_{x\to 0}\left(\frac{1}{x^2}-\frac{1}{\sin^2(x)}\right)=\lim_{x\to 0}\frac{\sin^2(x)-x^2}{x^2\sin^2(x)} = lim x 0 x 1 x 1 1 ! 1 ! 2 x 1 x 3 1 ! 6 ! + x 2 x 2 x 1 x 1 1 ! 1 ! = lim x 0 1 3 x 4 x 4 = 1 3 , =\displaystyle\lim_{x\to 0}\frac{\frac{x^1\cdot x^1}{1!1!}-2\frac{x^1\cdot x^3}{1!6!}+x^2}{x^2\frac{x^1\cdot x^1}{1!1!}}=\lim_{x\to 0}\frac{-\frac{1}{3}x^4}{x^4}=-\frac{1}{3},

so the answer is 1 + 3 = 4 1+3=\boxed{4} .

L = lim x 0 ( 1 x 2 1 sin 2 x ) L = \displaystyle \lim_{x \to 0} \left(\dfrac{1}{x^2} - \dfrac{1}{\sin^2x} \right)

L = lim x 0 ( 1 x 2 1 ( x x 3 3 ! ) 2 ) \Rightarrow L = \displaystyle \lim_{x \to 0} \left(\dfrac{1}{x^2} - \dfrac{1}{\left(x - \frac{x^3}{3!}\right)^2} \right)

L = lim x 0 1 x 2 ( 1 1 ( 1 x 2 3 ! ) 2 ) \Rightarrow L = \displaystyle \lim_{x \to 0} \dfrac{1}{x^2}\left(1 - \dfrac{1}{\left(1 - \frac{x^2}{3!} \right)^2} \right)

L = lim x 0 1 x 2 ( 1 ( 1 x 2 3 ! ) 2 ) \Rightarrow L = \displaystyle \lim_{x \to 0} \dfrac{1}{x^2} \left(1 - \left(1 - \dfrac{x^2}{3!}\right)^{-2} \right)

L = lim x 0 1 x 2 ( 1 ( 1 + ( 2 ) x 2 6 ) ) \Rightarrow L = \displaystyle \lim_{x \to 0} \dfrac{1}{x^2} \left(1 - \left(1 + (2)\dfrac{x^2}{6} \right) \right)

L = lim x 0 1 x 2 ( x 2 3 ) = 1 3 \Rightarrow L = \displaystyle \lim_{x \to 0} \dfrac{1}{x^2} \left(-\dfrac{x^2}{3} \right) = \boxed{-\dfrac{1}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...