n → ∞ lim n 2 + 1 + 4 n 2 − 1 1 − 2 + 3 − 4 + 5 − 6 + . . . − 2 n If the value of above limit equals to − b a , where a and b are positive co-prime integers, find the value of a b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In step 1, you've rearranged the sum in the numerator when it isn't convergent in the limit. This isn't valid.
Log in to reply
No it is convergent but as n tends to infinity there are infinite terms.
L = n → ∞ lim n 2 + 1 + 4 n 2 − 1 1 − 2 + 3 − 4 + 5 − 6 + ⋯ − 2 n = n → ∞ lim n 2 + 1 + 4 n 2 − 1 ( 1 + 2 + 3 + ⋯ + 2 n ) − 4 ( 1 + 2 + 3 + ⋯ + n ) = n → ∞ lim n 2 + 1 + 4 n 2 − 1 2 2 n ( 2 n + 1 ) − 4 ( 2 n ( n + 1 ) ) = n → ∞ lim n 2 + 1 + 4 n 2 − 1 − n = n → ∞ lim n 1 + n 2 1 + 2 n 1 − 4 n 2 1 − n = n → ∞ lim 1 + n 2 1 + 2 1 − 4 n 2 1 − 1 = 1 + 2 − 1 = − 3 1 Divide up and down by n
Therefore, a b = 1 × 3 = 3 .
Problem Loading...
Note Loading...
Set Loading...
n → ∞ lim n 2 + 1 + 4 n 2 − 1 ( 1 + 3 + 5 + . . . n t e r m s ) − 2 ( 1 + 2 + 3 + . . . n t e r m s )
n → ∞ lim n 2 + 1 + 4 n 2 − 1 n 2 − n ( n + 1 )
n → ∞ lim n 1 + n 2 1 + n 4 − n 2 1 − n
n 1 → 0 lim 1 + n 2 1 + 4 − n 2 1 − 1
⟹ − 1 + 4 1 = − 1 + 2 1 = − 3 1 = − b a
⟹ a × b = 3