Limits, Limits, Limits, Limits

Algebra Level 3

( 1 + a 3 1 ) x 2 + ( 1 + a 1 ) x + ( 1 + a 6 1 ) = 0 \left( \sqrt [ 3 ]{ 1+a } -1 \right) { x }^{ 2 }+\left( \sqrt { 1+a } -1 \right) x+(\sqrt [ 6 ]{ 1+a } -1)=0

Let α \alpha and β \beta be the roots of the equation (of x x ) above for a > 1 a> - 1 .

Find the values of lim a 0 + α \displaystyle \lim_{a \to 0^+} \alpha and lim a 0 + β \displaystyle \lim_{a \to 0^+} \beta respectively.

9 2 , 1 -\frac { 9 }{ 2 } , -1 1 2 , 1 -\frac {1 }{ 2 } , -1 5 2 , 1 -\frac { 5 }{ 2 } ,-1 7 2 , 1 -\frac { 7 }{ 2 } , -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ram Gautam
Feb 1, 2015

G i v e n e q u a t i o n : ( 1 + a 3 1 ) x 2 + ( 1 + a 1 ) x + ( 1 + a 6 1 ) = 0 H e n c e , α + β = l i m a 0 + { ( 1 + a 1 ) ( 1 + a 3 1 ) } = 3 2 α β = l i m a 0 + { ( 1 + a 6 1 ) ( 1 + a 3 1 ) } = 1 2 N o t e : Y o u C a n S o l v e T h e L i m i t s B y U s i n g L H o s p t i a l R u l e . T h e r e f o r e , B y U s i n g t h e i d e n t i t y : ( α β ) 2 = ( α + β ) 2 4 α β . W e g e t t h a t , α = 1 2 & β = 1 / \\ Given\quad equation:-\qquad \\ \\ \left( \sqrt [ 3 ]{ 1+a } -1 \right) { x }^{ 2 }+\left( \sqrt { 1+a } -1 \right) x+(\sqrt [ 6 ]{ 1+a } -1)=0\\ \\ Hence,\\ \alpha +\beta =\quad \underset { a\xrightarrow { } { 0 }^{ + } }{ lim } \left\{ \frac { \left( \sqrt { 1+a } -1 \right) }{ \left( \sqrt [ 3 ]{ 1+a } -1 \right) } \right\} =\frac { -3 }{ 2 } \\ \alpha \cdot \beta =\quad \underset { a\xrightarrow { } { 0 }^{ + } }{ lim } \left\{ \frac { \left( \sqrt [ 6 ]{ 1+a } -1 \right) }{ \left( \sqrt [ 3 ]{ 1+a } -1 \right) } \right\} =\frac { 1 }{ 2 } \\ Note:- \quad You\quad Can\quad Solve\quad The\quad Limits\quad By\quad Using\quad L-Hosptial\quad Rule.\\ Therefore,\\ By\quad Using\quad the\quad identity\quad :-\\ { \left( \alpha -\beta \right) }^{ 2 }={ \left( \alpha +\beta \right) }^{ 2 }-4\alpha \beta .\quad \\ We\quad get\quad that,\\ \alpha =\frac { -1 }{ 2 } \quad \& \quad \beta =-1/

Moderator note:

Can you solve the limits without applying L'hopital rule?

You can also solve for the limits by using binominal expansion to the first order.

Prakhar Gupta - 6 years, 1 month ago

The objective approach : as L i m a 0 + α + β = 3 2 Lim_{a \rightarrow 0^{+} }\alpha +\beta= \frac{-3}{2} which is satisfied by the first option only. ;)

Keshav Tiwari - 6 years, 1 month ago

Log in to reply

Gotcha! :D

Ram Gautam - 6 years, 1 month ago

I solved this limit by using the formula for roots of quadratic equation and the substituting (1+a ) = t^6 and then factorizing the term in the square root .

Anurag Pandey - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...