Limits of a Composition

Calculus Level 5

A = lim n ( 1 + 1 n 2 ) ( 1 + 4 n 2 ) ( 1 + 9 n 2 3 ) ( 1 + 16 n 2 4 ) . . . ( 2 n ) A = \displaystyle \lim\limits_{n\to \infty} \bigg( 1 + \frac{1}{n^2}\bigg)\bigg( \sqrt{1 + \frac{4}{n^2}}\bigg)\bigg( \sqrt[3]{1 + \frac{9}{n^2}}\bigg)\bigg( \sqrt[4]{1 + \frac{16}{n^2}}\bigg)...\bigg(\sqrt[n]{2}\bigg)

Determine 1 0 4 A \lfloor 10^4 A \rfloor .


Notation: \lfloor \cdot \rfloor denotes the floor function .


A similar, but easier problem


The answer is 15086.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

敬全 钟
May 9, 2017

Observe that we can convert the limit into an exponential term that involves an integral as follows.

A = lim n ( 1 + 1 n 2 ) ( 1 + 4 n 2 ) ( 1 + 9 n 2 3 ) ( 2 n ) = lim n ( 1 + 1 n 2 ) ( 1 + 2 2 n 2 ) ( 1 + 3 2 n 2 3 ) ( 1 + n 2 n 2 n ) = exp ( lim n k = 1 n 1 k ln ( 1 + k 2 n 2 ) ) = exp ( lim n 1 n k = 1 n n k ln ( 1 + k 2 n 2 ) ) = exp ( 0 1 ln ( 1 + x 2 ) x d x ) \begin{aligned} A & = & \lim _{ n\to \infty } \left( 1+\frac { 1 }{ n^{ 2 } } \right) \left( \sqrt { 1+\frac { 4 }{ n^{ 2 } } } \right) \left( \sqrt [ 3 ]{ 1+\frac { 9 }{ n^{ 2 } } } \right) \cdots \left( \sqrt [ n ]{ 2 } \right)\\ &=& \lim _{ n\to \infty } \left( 1+\frac { 1 }{ n^{ 2 } } \right) \left( \sqrt { 1+\frac { 2^2 }{ n^{ 2 } } } \right) \left( \sqrt [ 3 ]{ 1+\frac { 3^2 }{ n^{ 2 } } } \right) \cdots \left( \sqrt [ n ]{ 1+\frac{n^2}{n^2} } \right)\\ &=&\exp\left(\lim _{ n\to \infty }\sum^{n}_{k=1}\frac{1}{k}\ln\left(1+\frac{k^2}{n^2}\right)\right)\\ &=&\exp\left(\lim _{ n\to \infty }\frac{1}{n}\sum^{n}_{k=1}\frac{n}{k}\ln\left(1+\frac{k^2}{n^2}\right)\right)\\ &=&\exp\left(\int^{1}_{0}\frac{\ln(1+x^2)}{x}\ dx\right) \end{aligned}

Now, let us focus on the integral. Expanding the integrand about x = 0 x=0 and evaluating gives

0 1 ln ( 1 + x 2 ) x d x = 0 1 x x 3 2 + x 5 3 x 7 4 + d x = [ x 2 2 x 4 2 × 4 + x 6 3 × 6 x 8 4 × 8 + ] 0 1 = 1 1 × 2 1 2 × 4 + 1 3 × 6 1 4 × 8 + = 1 2 ( 1 1 2 1 2 2 + 1 3 2 1 4 2 + ) = 1 2 × π 2 12 (See note.) = π 2 24 . \begin{aligned} \int^1_0\frac{\ln(1+x^2)}{x}\ dx&=&\int^1_0x-\frac{x^3}{2}+\frac{x^5}{3}-\frac{x^7}{4}+\cdots\ dx\\ &=&\left[\frac{x^2}{2}-\frac{x^4}{2\times4}+\frac{x^6}{3\times6}-\frac{x^8}{4\times8}+\cdots\right]^1_0\\ &=&\frac{1}{1\times2}-\frac{1}{2\times4}+\frac{1}{3\times6}-\frac{1}{4\times8}+\cdots\\ &=&\frac{1}{2}\left(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+\cdots\right)\\ &=&\frac{1}{2}\times\frac{\pi^2}{12}\ \text{(See note.)}\\ &=&\frac{\pi^2}{24}. \end{aligned}

Putting everything together, we see that A = e π 2 24 . A=e^{\frac{\pi^2}{24}}.


Note: Evaluation of the sum S = 1 1 2 1 2 2 + 1 3 2 1 4 2 + ( ) . S=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+\cdots (*).

We know that 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + = ζ ( 2 ) = π 2 6 . \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots=\zeta(2)=\frac{\pi^2}{6}. Then, we can manipulate the sum ( ) (*) as follows. S = 1 1 2 1 2 2 + 1 3 2 1 4 2 + = ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ) 2 ( 1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 + ) = ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ) 1 2 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ) = 1 2 ( π 2 6 ) = π 2 12 . \begin{aligned} S&=&\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+\cdots\\ &=&{\color{#3D99F6}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots\right)}-{\color{magenta}2\left(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\cdots\right)}\\ &=&{\color{#3D99F6}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots\right)}-{\color{magenta}\frac{1}{2}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots\right)}\\ &=&\frac{1}{2}\left(\frac{\pi^2}{6}\right)\\ &=&\frac{\pi^2}{12}. \end{aligned}

Thus, S = π 2 12 . S=\frac{\pi^2}{12}.

I was just about to post my solution, which is very very similar to yours! Thank you!

Efren Medallo - 4 years, 1 month ago

Log in to reply

Thanks, it is a nice problem to solve.

敬全 钟 - 4 years, 1 month ago
Efren Medallo
May 9, 2017

It may not seem like it, but there is a reason why this problem was titled Limits of a Composition.

A = lim n ( 1 + 1 n 2 ) ( 1 + 4 n 2 ) ( 1 + 9 n 2 3 ) ( 1 + 16 n 2 4 ) . . . ( 2 n ) A = \displaystyle \lim\limits_{n\to \infty} \bigg( 1 + \frac{1}{n^2}\bigg)\bigg( \sqrt{1 + \frac{4}{n^2}}\bigg)\bigg( \sqrt[3]{1 + \frac{9}{n^2}}\bigg)\bigg( \sqrt[4]{1 + \frac{16}{n^2}}\bigg)...\bigg(\sqrt[n]{2}\bigg)

If we take the natural logarithm of both sides, we get the following:

ln A = ln [ lim n ( 1 + 1 n 2 ) ( 1 + 4 n 2 ) ( 1 + 9 n 2 3 ) ( 1 + 16 n 2 4 ) . . . ( 2 n ) ] \ln A = \ln \Bigg[ \displaystyle \lim\limits_{n\to \infty} \bigg( 1 + \frac{1}{n^2}\bigg)\bigg( \sqrt{1 + \frac{4}{n^2}}\bigg)\bigg( \sqrt[3]{1 + \frac{9}{n^2}}\bigg)\bigg( \sqrt[4]{1 + \frac{16}{n^2}}\bigg)...\bigg(\sqrt[n]{2}\bigg) \Bigg]

Now, for any two functions f ( x ) f(x) and g ( x ) g(x) such that lim x a g ( x ) = b \lim\limits_{x \to a} g(x) = b , and that f f is continuous at b b , then we have the following relationship:

lim x a f ( g ( x ) ) = f ( lim x a g ( x ) ) \lim\limits_{x \to a} f ( g(x) ) = f( \lim\limits_{x \to a} g(x))

For our problem, the long equation equating to A A is g ( x ) g(x) , while f ( x ) = ln x f(x) = \ln x . This will now enable us to remove the limit operator inside the logarithm operand.

It now becomes..

ln A = lim n ln [ ( 1 + 1 n 2 ) ( 1 + 4 n 2 ) ( 1 + 9 n 2 3 ) ( 1 + 16 n 2 4 ) . . . ( 2 n ) ] \ln A = \displaystyle \lim\limits_{n\to \infty} \ln \Bigg[ \bigg( 1 + \frac{1}{n^2}\bigg)\bigg( \sqrt{1 + \frac{4}{n^2}}\bigg)\bigg( \sqrt[3]{1 + \frac{9}{n^2}}\bigg)\bigg( \sqrt[4]{1 + \frac{16}{n^2}}\bigg)...\bigg(\sqrt[n]{2}\bigg) \Bigg]

Hence the title.

ln A = lim n [ ln ( 1 + 1 n 2 ) + ln ( 1 + 4 n 2 ) 2 + ln ( 1 + 9 n 2 ) 3 + . . . ln 2 n ] \ln A = \displaystyle \lim\limits_{n \to \infty} \Big[ \ln(1 + \frac{1}{n^2})+ \frac{ \ln(1 + \frac{4}{n^2})}{2} + \frac{\ln(1 + \frac{9}{n^2})}{3}+ ... \frac{\ln 2}{n} \Big]

ln A = lim n k = 1 ln ( 1 + k 2 n 2 ) k \ln A = \displaystyle \lim\limits_{n \to \infty} \sum\limits_{k=1}^{\infty} \frac{ \ln (1 + \frac{k^2}{n^2})}{k}

A little bit of modification yields

ln A = lim n 1 n k = 1 ln ( 1 + k 2 n 2 ) k n \ln A = \displaystyle \lim\limits_{n \to \infty} \frac{1}{n} \sum\limits_{k=1}^{\infty} \frac{ \ln (1 + \frac{k^2}{n^2})}{\frac{k}{n}}

ln A = 0 1 ln ( 1 + x 2 ) x \ln A = \displaystyle \int_0^1 \frac{ \ln(1 + x^2)}{x}

By a similar method used to solve this problem , we find out that ln A = π 2 24 \ln A = \frac{\pi^2}{24} .

And so we find A = e π 2 24 \displaystyle A = e^{\frac{\pi^2}{24}} .

And... 1 0 4 A = 15086 \lfloor 10^4 A \rfloor = \boxed { 15086 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...