Limits of functions III

Calculus Level 2

Find the limit :

lim x + ( e x e x e x + e x ) . \large \lim _{x\to+\infty}\left(\frac{e^x-e^{-x}}{e^x+e^{-x}}\right).

Use this to the problem: lim x + e x . = + \lim\limits_{x\to +\infty}e^x.=+\infty


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

THE LIMIT IS 0 0 \frac{0}{0}

  • next we developt the limit :

lim x + ( e x e x e x + e x ) = lim x + ( e 2 x 1 e 2 x + 1 ) = lim x + ( e 2 x e 2 x + 1 ) lim x + ( 1 e 2 x + 1 ) = lim x + ( e 2 x e 2 x ( 1 + e 2 x ) ) = lim x + ( 1 1 + e 2 x ) = 1 \large \lim _{x\to+\infty }\left(\frac{e^x-e^{-x}}{e^x+e^{-x}}\right)= \large \lim _{x\to+\infty }\left(\frac{e^{2x}-1}{e^{2x}+1}\right)=\large \lim _{x\to+\infty }\left(\frac{e^{2x}}{e^{2x}+1}\right)-\large \lim _{x\to+\infty }\left(\frac{1}{e^{2x}+1}\right)=\large \lim _{x\to+\infty }\left(\frac{e^{2x}}{e^{2x}(1+e^{-2x})}\right)= \large \lim _{x\to+\infty }\left(\frac{1}{1+e^{-2x}}\right)=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...