Limits of Functions

Calculus Level 1

Evaluate: lim n 0 ln ( n + 1 ) n \lim_{n\to 0} \dfrac{\ln(n+1)}{n}

e 0 -1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By L'Hospital's Rule , d d x ( ln ( n + 1 ) n ) = ( 1 n + 1 ) / 1 \frac{d}{dx}(\frac{\ln(n+1)}{n})=(\frac{1}{n+1})/1 . Now substituting with n = 0 n=0 we get the required limit as 1 \boxed{1}

1ª.-

ln(n +1) ~ n when n \rightarrow 0 \Rightarrow lim n 0 l n ( n + 1 ) n = 1 \lim_{n\to 0} \dfrac{ln(n +1)}{n} = 1

2ª.-

f(x) = ln (1 + x) is a derivative function at x = 0, f(0) = ln 1 = 0 lim n 0 l n ( n + 1 ) n = lim n 0 l n ( n + 1 ) l n ( 1 ) n 0 = f ( 0 ) = 1 1 + 0 = 1 \Rightarrow \lim_{n\to 0} \dfrac{ln(n +1)}{n} = \lim_{n\to 0} \dfrac{ln(n +1) - ln(1)}{n - 0} = f ' (0) = \frac{1}{1 + 0} = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...