Limits of triple differentiation

Calculus Level 4

If f ( x ) f(x) is a thrice differentiable function such that

lim x 0 f ( 4 x ) 3 f ( 3 x ) + 3 f ( 2 x ) f ( x ) x 3 = 12 , \large \lim_{x \rightarrow 0} \frac{f(4x) - 3 f(3x) + 3f(2x) - f(x)}{x^3} = 12,

find the value of f ( 0 ) f'''(0) .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 31, 2016

L = lim x 0 f ( 4 x ) 3 f ( 3 x ) + 3 f ( 2 x ) f ( x ) x 3 A 0/0 cases, L’H o ˆ pital’s rule applies. = lim x 0 4 f ( 4 x ) 9 f ( 3 x ) + 6 f ( 2 x ) f ( x ) 3 x 2 A 0/0 cases again, apply L’H o ˆ pital’s rule. = lim x 0 16 f ( 4 x ) 27 f ( 3 x ) + 12 f ( 2 x ) f ( x ) 6 x A 0/0 cases again, apply L’H o ˆ pital’s rule. = lim x 0 64 f ( 4 x ) 81 f ( 3 x ) + 24 f ( 2 x ) f ( x ) 6 = f ( 0 ) = 12 \begin{aligned} L & = \lim_{x \to 0} \frac {f(4x)-3f(3x)+3f(2x)-f(x)}{x^3} & \small \color{#3D99F6} \text{A 0/0 cases, L'Hôpital's rule applies.} \\ & = \lim_{x \to 0} \frac {4f'(4x)-9f'(3x)+6f'(2x)-f'(x)}{3x^2} & \small \color{#3D99F6} \text{A 0/0 cases again, apply L'Hôpital's rule.} \\ & = \lim_{x \to 0} \frac {16f''(4x)-27f''(3x)+12f''(2x)-f''(x)}{6x} & \small \color{#3D99F6} \text{A 0/0 cases again, apply L'Hôpital's rule.} \\ & = \lim_{x \to 0} \frac {64f'''(4x)-81f'''(3x)+24f'''(2x)-f'''(x)}{6} \\ & = f'''(0) = \boxed{12} \end{aligned}

Isnt it a nice sum?

Md Zuhair - 4 years, 5 months ago

Log in to reply

You mean a nice problem. Yes, it is.

Chew-Seong Cheong - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...