Limits Plus: I

Calculus Level 3

Evaluate without the use of L'Hôpital's Rule:

lim x 0 2 x 1 2 x + 1 x . \lim _{ x\rightarrow 0 }{ \frac { \left| 2x-1\right| -\left| 2x+1\right| }{x } } .


Problem credit: Calculus: 6E, James Stewart


The answer is -4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

John M.
Aug 29, 2014

For 1 2 < x < 1 2 -\frac{1}{2}<x<\frac{1}{2} , we have 2 x 1 < 0 2x-1<0 and 2 x + 1 > 0 2x+1>0 , so 2 x 1 = ( 2 x 1 ) \left| 2x-1 \right| =-(2x-1) and 2 x + 1 = 2 x + 1 \left|2x+1 \right| =2x+1 .

Therefore,

lim x 0 2 x 1 2 x + 1 x \lim _{ x\rightarrow 0 }{ \frac { \left| 2x-1\right| -\left| 2x+1\right| }{x } }

= lim x 0 ( 2 x 1 ) ( 2 x + 1 ) x =\lim _{ x\rightarrow 0 }{ \frac {(-2x-1)-(2x+1) }{x } }

= lim x 0 4 x x =\lim_{x\rightarrow 0}{\frac{-4x}{x}}

= lim x 0 4 =\lim_{x\rightarrow 0}{-4}

= 4 =\boxed{-4} .

Basic use of the property of modulus.

Anurag Pandey - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...