Limits Plus: III

Calculus Level 2

If

lim x 1 x 3 1 x 1 = a b \lim _{ x\rightarrow 1 }{ \frac{ \sqrt [ 3 ]{ x}-1 } {\sqrt{x}-1}}=\frac{a}{b} ,

evaluate a + b a+b .


NOTE:

No L'Hôpital's Rule.


Problem credit: Calculus: 6E, James Stewart


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let u = x 6 u = \sqrt[6]{x} . Then u 1 u \rightarrow 1 as x 1 x \rightarrow 1 , and the limit then becomes

lim u 1 u 2 1 u 3 1 = lim u 1 ( u 1 ) ( u + 1 ) ( u 1 ) ( u 2 + u + 1 ) = lim u 1 u + 1 u 2 + u + 1 = 2 3 \lim_{u \rightarrow 1} \dfrac{u^{2} - 1}{u^{3} - 1} = \lim_{u \rightarrow 1} \dfrac{(u - 1)(u + 1)}{(u - 1)(u^{2} + u + 1)} = \lim_{u \rightarrow 1} \dfrac{u + 1}{u^2 + u + 1} = \dfrac{2}{3} .

Thus a = 2 , b = 3 a = 2, b = 3 and a + b = 5 a + b = \boxed{5} .

A simpler approach would be to make the substitution y = x y=\sqrt{x} and then use the identity lim y a ( y n a n y a ) = n a n 1 \displaystyle \lim_{y\to a} \left( \dfrac{y^n-a^n}{y-a}\right)=na^{n-1}

Prasun Biswas - 6 years, 4 months ago

perfect answer

Moemen Adel - 6 years, 8 months ago
Daniel Liu
Aug 29, 2014

Why no L'Hopital's rule? ¨ \ddot\frown

L'Hopital's rule gives lim x 1 2 x 3 x 3 2 = 2 3 \lim\limits_{x\to 1} \dfrac{2\sqrt{x}}{3\sqrt[3]{x}^2}=\dfrac{2}{3} so our answer is 5 \boxed{5} .

I know right, L'Hopital makes this problem a one-liner :D.

Jayakumar Krishnan - 6 years, 9 months ago

Log in to reply

Exactly. That's why we don't use it. The point is to demonstrate your algebraic skills.

John M. - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...