Limits to the Limit -2!

Calculus Level 3

lim x 0 ( 1 + tan ( x ) 1 + sin ( x ) x 3 ) \large \lim_{x \to 0 } \left ( \frac{\sqrt{1+ \tan (x)} - \sqrt{1 + \sin(x)}}{x^3} \right)

Find the reciprocal of the limit above.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

lim x 0 ( 1 + t a n x 1 + s i n x x 3 ) = lim x 0 ( t a n x + s i n x x 3 ( 1 + t a n x + 1 + s i n x ) ) = lim x 0 ( s i n x ( 1 + c o s x ) x 3 ( 1 + t a n x + 1 + s i n x ) c o s x ) \lim _{ x\rightarrow 0 }{ \left( \frac { \sqrt { 1+tanx } -\sqrt { 1+sinx } }{ { x }^{ 3 } } \right) = } \lim _{ x\rightarrow 0 }{ \left( \frac { tanx+sinx }{ { x }^{ 3 }(\sqrt { 1+tanx } +\sqrt { 1+sinx } ) } \right) = } \lim _{ x\rightarrow 0 }{ \left( \frac { sinx(1+cosx) }{ { x }^{ 3 }(\sqrt { 1+tanx } +\sqrt { 1+sinx } )cosx } \right) }

= lim x 0 ( s i n x ( 1 cos 2 x ) x 3 ( 1 + t a n x + 1 + s i n x ) c o s x ( 1 c o s x ) ) = lim x 0 ( sin 3 x x 3 ( 1 + t a n x + 1 + s i n x ) c o s x ( 1 c o s x ) ) =\lim _{ x\rightarrow 0 }{ \left( \frac { sinx(1-\cos ^{ 2 }{ x } ) }{ { x }^{ 3 }(\sqrt { 1+tanx } +\sqrt { 1+sinx } )cosx(1-cosx) } \right) } =\lim _{ x\rightarrow 0 }{ \left( \frac { \sin ^{ 3 }{ x } }{ { x }^{ 3 }(\sqrt { 1+tanx } +\sqrt { 1+sinx } )cosx(1-cosx) } \right) }

= lim x 0 ( sin 3 x x 3 ( 1 + t a n x + 1 + s i n x ) c o s x ( 1 c o s x ) ) = 1 4 =\lim _{ x\rightarrow 0 }{ \left( \frac { \frac { \sin ^{ 3 }{ x } }{ { x }^{ 3 } } }{ (\sqrt { 1+tanx } +\sqrt { 1+sinx } )cosx(1-cosx) } \right) } =\frac { 1 }{ 4 }

The answer is 4 4

Wrong solution. The numerator becomes tan x sin x \tan x - \sin x . You were lucky to get the correct answer

Krutarth Patel - 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...