Limits to the Limit -3!

Calculus Level 3

lim x 0 ( 1 [ cos ( x ) cos ( 2 x ) ] tan 2 x ) \large \lim_{x\to 0} \left( \frac{1 - \left[\cos(x) \sqrt{\cos(2x)} \right]}{\tan^2 x} \right)

If the limit above can be expressed as A B \frac AB where A , B A,B are coprime positive integers, find A + B A+B .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Lie
Mar 19, 2018

L = lim x 0 1 cos x cos 2 x tan 2 x = lim x 0 1 cos x tan 2 x + lim x 0 ( 1 cos 2 x ) cos x tan 2 x = lim x 0 1 cos x x 2 + lim x 0 1 cos 2 x x 2 ( 1 + cos 2 x ) = lim x 0 1 2 x 2 x 2 + lim x 0 1 2 ( 2 x ) 2 2 x 2 = 3 2 \begin{aligned} L&=\lim_{x\to 0} \frac{1 - \cos x \sqrt{\cos 2x}}{\tan^2 x} \\&=\lim_{x\to 0}\frac{1-\cos x}{\tan^2 x}+\lim_{x\to 0}\frac{(1-\sqrt{\cos 2x})\cos x}{\tan^2 x} \\&=\lim_{x\to 0}\frac {1-\cos x}{x^2}+\lim_{x\to 0}\frac {1-\cos 2x}{x^2(1+\sqrt{\cos 2x})} \\&=\lim_{x\to 0}\frac{\frac 12x^2}{x^2}+\lim_{x\to 0}\frac {\frac 12 (2x)^2}{2x^2} \\&=\frac 32 \end{aligned} Therefore, the answer is 3 + 2 = 5 3+2=\boxed 5 .

ohh!!!! i thought it was GIF in square bracket btw nice solution

Ashutosh Sharma - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...